Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  bubble attachment
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Bubble attachment phenomena are examined using Molecular Dynamics Simulations (MDS) for the first time. The simulation involves a nitrogen nano bubble containing 906 nitrogen molecules in a water phase with 74,000 water molecules at molybdenite surfaces. During a simulation period of 1 ns, film rupture and displacement occurs. The attached nanobubble at the hydrophobic molybdenite face surface results in a contact angle of about 90º. This spontaneous attachment is due to a “water exclusion zone” at the molybdenite face surface and can be explained by a van der Waals (vdW) attractive force, as discussed in the literature. In contrast, the film is stable at the hydrophilic quartz (001) surface and the bubble does not attach. Contact angles determined from MD simulations are reported, and these results agree well with experimental and MDS sessile drop results. In this way, film stability and bubble attachment are described with respect to interfacial water structure for surfaces of different polarity. Interfacial water molecules at the hydrophobic molybdenite face surface have relatively weak interactions with the surface when compared to the hydrophilic quartz (001) surface, as revealed by the presence of a 3 Å “water exclusion zone” at the molybdenite/water interface. The molybdenite armchair-edge and zigzag-edge surfaces show a comparably slow process for film rupture and displacement when compared to the molybdenite face surface, which is consistent with their relatively weak hydrophobic character.
EN
The effect of air, dissolved in 0.1 M KCl solution, on bubble attachment to the smooth hydrophobic surface of highly oriented pyrolytic graphite was studied. The stability of a wetting film in such a system is governed by surface forces, i.e. electrostatic and van der Waals interactions. At the high ionic strength investigated, the electric double layer forces are both weak and of short range, therefore the stability of the wetting film is dominated by van der Waals interactions. The Hamaker coefficient for the highly oriented pyrolytic graphite-KCl aqueous solution-air system is negative and hence van der Waals interactions are repulsive. A repulsive force should stabilize the wetting film, preventing its rupture and bubble attachment to the highly oriented pyrolytic graphite surface. Many experimental studies have found that wetting films are not stable at graphite or coal surfaces, and air bubbles attach. In the present experiments, the stability of the wetting films decreased with increasing amount of dissolved air. The time required for film drainage, rupture, and air bubble attachment was shortened by two orders of magnitude when the experiments were performed in air saturated 0.1 M KCl solution. This instability was attributed to an increasing number of nano- and submicron- bubbles nucleated at the graphite surface. The Hamaker coefficient across the air-KCl aqueous solution-air system is positive and hence van der Waals interactions are attractive, resulting in wetting film rupture and macroscopic air bubble attachment to a highly oriented pyrolytic graphite surface decorated with resident nano- and submicro-metre bubbles.
EN
In this study the advancing and receding contact angles of waterweremeasured on Teflon plates. Dynamic phenomena occurring during the bubble collision, attachment and the three phase contact formation (TPC) at the Teflon plates of different surface roughness were monitored, using a high speed camera SpeedCam (1182 Hz). Variations of the receding contact angles and the diameters of bubble attachment perimeters to Teflon were found to correlate to some extent.
EN
The paper presents results and analysis of influence of hydrophobic surface roughness on apparent contact angle values (equilibrium conditions) and time of the bubble attachment (dynamic conditions) to hydrophobic solid surfaces (Teflon) of different roughness. The surface roughness of Teflon plates was modified in a mechanical way using abrasive papers and/or diamond paste of different grid numbers. Measurements of contact angles were carried out by the sessile drop technique, while the time of three phase contact (TPC) formation and the bubble attachment were determined in a course of the bubble collisions with Teflon plates, using a high speed camera (1182 Hz). It was found that the surface roughness is an important parameter affecting both quantities determined. With increasing surface roughness the static contact angle was increasing, while the time needed for TPC formation and the bubble attachment was significantly shortened, from ca. 80 to 3 ms. Air entrapped inside surface scratches seems to be a reason of these effects. With increasing roughness a larger amount of air can be entrapped inside the scratches. This hypothesis is confirmed by measurements of the diameters of contact perimeter of the attached bubble, where it was found that the perimeter increases with the surface roughness.
PL
W pracy przedstawiono wyniki i analizę wpływu szorstkości powierzchni hydrofobowej na wielkości wstępujących kątów zwilżania (warunki równowagowe) oraz na czas potrzebny do przyczepienia bańki (warunki dynamiczne) do hydrofobowej powierzchni ciała stałego (teflon). Szorstkość powierzchni płytek teflonowych była modyfikowana mechanicznie przy użyciu papieru ściernego o różnym uziarnieniu oraz pasty diamentowej. Pomiary kątów zwilżania wykonano metodą “siedzącej” kropli (sessile drop) a czas powstawania kontaktu trójfazowego (TPC) i przyczepienia bańki był wyznaczany przy zastosowaniu szybkiej kamery (1182 Hz). Wykazano, że szorstkość powierzchni jest parametrem mającym olbrzymi wpływ na obie badane wielkości. Ze wzrostem szorstkości powierzchni wzrastały wartości kąta zwilżania, a czas potrzebny do utworzenia TPC i przyczepienia bańki ulegał znacznemu skróceniu, od ok. 80 ms do 3 ms. Ponieważ ze wzrostem szorstkości zwiększa się ilość powietrza ”uwięzionego” wewnątrz nierówności powierzchniowych dlatego wydaje się, że jest to czynnik decydujący o zmianach wielkości kąta zwilżania i wartości czasu potrzebnego do utworzenia TPC. Potwierdzeniem poprawności tej hipotezy są także przedstawione w pracy wyniki pomiarów średnic perymetru przyczepionej bańki. W pomiarach tych wykazano, że ze wzrostem szorstkości wzrasta średnica perymetru bańki przyczepionej do powierzchni teflonu.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.