Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  breast lesion classification
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We propose a novel approach to breast mass classification based on deep learning models that utilize raw radio-frequency (RF) ultrasound (US) signals. US images, typically displayed by US scanners and used to develop computer-aided diagnosis systems, are reconstructed using raw RF data. However, information related to physical properties of tissues present in RF signals is partially lost due to the irreversible compression necessary to make raw data readable to the human eye. To utilize the information present in raw US data, we develop deep learning models that can automatically process small 2D patches of RF signals and their amplitude samples. We compare our approach with classification method based on the Nakagami parameter, a widely used quantitative US technique utilizing RF data amplitude samples. Our better performing deep learning model, trained using RF signals and their envelope samples, achieved good classification performance, with the area under the receiver attaining operating characteristic curve (AUC) and balanced accuracy of 0.772 and 0.710, respectively. The proposed method significantly outperformed the Nakagami parameter-based classifier, which achieved AUC and accuracy of 0.64 and 0.611, respectively. The developed deep learning models were used to generate parametric maps illustrating the level of mass malignancy. Our study presents the feasibility of using RF data for the development of deep learning breast mass classification models.
EN
Ultrasound imaging is widely used for breast lesion differentiation. In this paper we propose a neural transfer learning method for breast lesion classification in ultrasound. As reported in several papers, the content and the style of a particular image can be separated with a convolutional neural network. The style, coded by the Gram matrix, can be used to perform neural transfer of artistic style. In this paper we extract the neural style representations of malignant and benign breast lesions using the VGG19 neural network. Next, the Fisher discriminant analysis is used to separate those neural style representations and perform classification. The proposed approach achieves good classification performance (AUC of 0.847). Our method is compared with another transfer learning technique based on extracting pooling layer features (AUC of 0.826). Moreover, we apply the Fisher discriminant analysis to differentiate breast lesions using ultrasound images (AUC of 0.758). Additionally, we extract the eigenimages related to malignant and benign breast lesions and show that these eigenimages present features commonly associated with lesion type, such as contour attributes or shadowing. The proposed techniques may be useful for the researchers interested in ultrasound breast lesion characterization.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.