Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  breakage probability
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Computer simulation of bulk materials behavior, including comminution and fragmentation, using DEM has been growing fast, recently. One of the important tasks to get the reliable simulation results is to provide proper materials and contact parameters, which need to be determined in a series of laboratory experiments. For comminution simulation the additional parameters describing the breakage probability and breakage functions are necessary. While some simulation parameters are available in the literature for brittle materials, valid data are lacking for biomaterials such as cereal, rice or corn grains, especially for comminution parameters. The aim of this study was to present the calibration approach and determination of materials, contact, interaction and breakage parameters for grainy biomaterials. The calibration process was done for rice and corn grains. The calibration approach consists of grains size distribution and shape characterization, friction and restitution coefficient determination, and breakage probability description. Based on the results of the experiments, the models were created in the DEM software. The result was the set of calibrated parameters for rice and corn grains.
EN
The strength of a particle is one of the most crucial characteristics within a comminution process due to the mechanical stresses experienced by each particle. In this study, the K9 glass spheres and ceramic spheres were subjected to a breakage test. The test includes the breakage of up to 240 particles under compression to obtain the distribution of the breakage probability depending on the crushing force and breakage energy. The breakage test was conducted for five particle size fractions from each individual material. Thus obtained 10 crushing force distributions and corresponding 10 breakage energy distributions were fitted with lognormal distribution function. The parameters in the lognormal were analyzed including the effect of the material and particle size. Following this, the relationship between the crushing force and breakage energy was analyzed based on the Hertzian elastic contacts model and Tomas’s elastic-plastic contact model, respectively. Additionally, particle strength in terms of crushing force and breakage energy were compared and found to be size dependent. Finally, a simple transformation algorithm of distributions is developed. According to this algorithm the crushing force distribution can be transformed into breakage energy distribution and vice versa. The findings facilitate a better understanding of the particle strength distribution under compression and will help to improve the comminution process design, control and optimization.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.