Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 43

Liczba wyników na stronie
first rewind previous Strona / 3 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  brain-computer interface
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 3 next fast forward last
EN
The main objective of this paper is to carry out a research on the analysis of the use of brain-computer interface in everyday life. The article presents the method of recording brain activity, electroencephalography, which was used in the study. The brain activity used in the brain-computer interface and the general principle of brain-computer interface design are also described. The performed study allowed to develop an analysis of the obtained results in the matter of evaluating the usability of brain-computer interfaces using motor imagery. As a result of the process of analyzing the results obtained during the research, it was found that each subsequent experiment allowed for obtaining more favourable results than the previous one. The reason for this was the use of an additional training session for the next test person. In the final stage, it was possible to evaluate the usability of the brain-computer interface in everyday life
PL
Głównym celem artykułu jest przeprowadzenie badania nad analizą wykorzystania interfejsu mózg-komputer w życiu codziennym. W artykule przedstawiono metodę rejestrowania aktywności mózgu, elektroencefalografię, która została wykorzystana w badaniu. Opisano również aktywność mózgu wykorzystywaną w interfejsie mózg-komputer oraz ogólną zasadę projektowania interfejsu mózg-komputer. Przeprowadzone badanie pozwoliło na opracowanie analizy uzyskanych wyników w zakresie oceny użyteczności interfejsów mózg-komputer z wykorzystaniem obrazowania motorycznego. W wyniku procesu analizy wyników uzyskanych podczas przeprowadzania badań ustalono, iż każdy następnie zrealizowany eksperyment pozwalał na uzyskanie korzystniejszych wyników od poprzedniego. Powodem tego było zastosowanie dodatkowej sesji treningowej dla kolejnych badanych osób. W końcowym etapie można było ocenić przydatność interfejsu mózg-komputer w życiu codziennym
PL
Celem eksperymentów było zbadanie czy rzeczywistość wirtualna usprawnia korzystanie z interfejsu mózg-komputer. Do badania wykorzystano autorski system informatyczny, który umożliwia rysowanie kształtów na ekranie komputera. Przygotowane stanowisko badawcze składa się z komputera z niezbędnym oprogramowaniem, z mobilnych gogli wirtualnej rzeczywistości Esperanza EMV300 ze smartfonem Samsung Galaxy A40 oraz interfejsu mózg-komputer Emotiv Epoc. Wykazano, że imersja pozwala zwiększyć poziom koncentracji i sprawniej korzystać z interfejsu mózg-komputer. Taki rodzaj zanurzenia w rzeczywistość wirtualną może zapoczątkować całą serię aplikacji obsługiwanych w sposób intuicyjny, za pomocą komend myślowych, w wykreowanym wirtualnym świecie.
EN
The purpose of the experiments was to investigate whether virtual reality improves the use of the brain-computer interface. The study used a custom computer system that allows drawing shapes on the computer screen. The prepared test stand consists of a computer with the necessary software, Esperanza EMV300 mobile virtual reality goggles with a Samsung Galaxy A40 smartphone and Emotiv Epoc braincomputer interface. It was shown that immersion allows to increase the level of concentration and use the brain-computer interface more efficiently. This kind of immersion in virtual reality could initiate a whole series of applications operated intuitively, via thought commands, in a created virtual world.
EN
In the field of human-computer interaction, the detection, extraction and classification of the electroencephalogram (EEG) spectral and spatial features are crucial towards developing a practical and robust non-invasive EEG-based brain-computer interface. Recently, due to the popularity of end-to-end deep learning, the applicability of algorithms such as convolutional neural networks (CNN) has been explored to achieve the mentioned tasks. This paper presents an improved and compact CNN algorithm for motor imagery decoding based on the adaptation of SincNet, which was initially developed for speaker recognition task from the raw audio input. Such adaptation allows for a compact end-to-end neural network with state-of-the-art (SOTA) performances and enables network interpretability for neurophysiological validation in cortical rhythms and spatial analysis. In order to validate the performance of proposed algorithms, two datasets were used; the first is the publicly available BCI Competition IV dataset 2a, which was often used as a benchmark in validating motor imagery classification algorithms, and the second is a dataset consists of primary data initially collected to study the difference between motor imagery and mental-task associated motor imagery BCI and was used to test the plausibility of the proposed algorithm in highlighting the differences in terms of cortical rhythms. Competitive decoding performance was achieved in both datasets in comparisons with SOTA CNN models, albeit with the lowest number of trainable parameters. In addition, it was shown that the proposed architecture performs a cleaner band-pass, highlighting the necessary frequency bands that were crucial and neurophysiologically plausible in solving the classification tasks.
4
EN
Objectives: Helping patients suffering from serious neurological diseases that lead to hindering the independent movement is of high social importance and an interdisciplinary challenge for engineers. Brain–computer interface (BCI) interfaces based on the electroencephalography (EEG) signal are not easy to use as they require time consuming multiple electrodes montage. We aimed to contribute in bringing BCI systems outside the laboratories so that it could be more accessible to patients, by designing a wheelchair fully controlled by an algorithm using alpha waves and only a few electrodes. Methods: The set of eight binary words are designed, that allow to move forward, backward,turn right andleft, rotate 45° as well as toincrease and decrease the speed of the wheelchair. Our project includes: development of a mobile application which is used as a graphical user interface, real-time signal processing of the EEG signal, development of electric wheelchair engines control system and mechanical construction. Results: The average sensitivity, without training, was 79.58% and specificity 97.08%, on persons who had no previous contact with BCI. Conclusions: The proposed system can be helpful for people suffering from incurable diseases that make them closed in their bodies and for whom communication with the surrounding world is almost impossible.
5
Content available remote An empirical survey of electroencephalographybased brain-computer interfaces
EN
Objectives: The Electroencephalogram (EEG) signal is modified using the Motor Imagery (MI) and it is utilized for patients with high motor impairments. Hence, the direct relationship between the computer and brain is termed as an EEG-based brain-computer interface (BCI). The objective of this survey is to presents an analysis of the existing distinct BCIs based on EEG. Methods: This survey provides a detailed review of more than 60 research papers presenting the BCI-based EEG, like motor imagery-based techniques, spatial filtering-based techniques, Steady-State Visual Evoked Potential (SSVEP)- based techniques, machine learning-based techniques, Event-Related Potential (ERP)-based techniques, and online EEG-based techniques. Subsequently, the research gaps and issues of several EEG-based BCI systems are adopted to help the researchers for better future scope. Results: An elaborative analyses as well as discussion have been provided by concerning the parameters, like evaluation metrics, year of publication, accuracy, implementation tool, and utilized datasets obtained by various techniques. Conclusions: This survey paper exposes research topics on BCI-based EEG, which helps the researchers and scholars, who are interested in this domain.
6
Content available remote Extracting multiple commands from a single SSVEP flicker using eye-accommodation
EN
The steady-state visually evoked potential (SSVEP) based brain-computer interfaces (BCIs) generally deploy flickering stimuli with different frequencies in order to generate different commands. This paper presents a setup that can be used to generate multiple commands from a single flickering stimulus using magnitude modulation of SSVEP through eye-accommodation. In this setup, a flickering stimulus was shown on the computer screen and a passive fixation target was placed between the screen and the subject. The eye-accommodation mechanism to focus on the target between the screen and the subject, caused the flickering stimulus to become blurred which reduced the magnitude of the evoked SSVEP response. The reduced magnitude SSVEP response can be used to generate another command over the command generated when the subject focuses directly on the stimulus. The fixation target was placed at 3 different positions that can provide up to 4 commands from the single flicker stimulus. Fifteen healthy human subjects participated in the experiments. The mean offline accuracies obtained for 2-class, 3-class, and 4-class extraction were 100%, 94.2 ± 6.1%, and 80.9 ± 9.7% respectively for a 4-seconds time window.
EN
Non-stationarity of electroencephalogram (EEG) signals greatly affect classifier performance in brain-computer interface (BCI). To overcome this problem we propose an adaptive classifier model known as extended multiclass pooled mean linear discriminant analysis (EMPMLDA). Here, we update the average class pair co-variance matrix along with pooled mean values. Evaluation of classifiers are done on visual evoked cortical potential data-sets. We demonstrate that EMPMLDA can significantly outperform other static classifiers such as MLDA and adaptive classifiers (MPMLDA). Furthermore an optimal update coefficient can be achieved using different datasets.
8
Content available remote Mózgi na celowniku. W sieci jak w Matrixie
PL
Celem pracy było zbudowanie układu sterowania prostym modelem pojazdu za pomocą interfejsu mózg-komputer (ang. brain computer interface - BCI). Omówiono zasadę działania BCI oraz wykorzystanie BCI w mechatronice, w tym na potrzeby interdyscyplinarnych badań kognitywistycznych (nauk o poznaniu). W dalszej części pracy Autorzy skupili się na opisie modelu, który posłużył do przeprowadzenia badania, ze szczególny uwzględnieniem współdziałania BCI oraz Arduino. Czwarta część pracy dotyczy badania działania zbudowanego rozwiązania technicznego przeprowadzonego na grupie osób w wieku 8-54 lat.
EN
This artilce aims at consctruction of the brain-computer interface (BCI) - based control system of the car model. Article decribes BCI's rules of operation and BCI applications in mechatronics, including interdisciplinary cognitive sciences. Further part of the article is focused on description of the model used in the research, particularly on BCI-Arduino cooperation. The last part of the article shows research on subjects aged 8-54 years concerning BCI use to control car model..
PL
Interfejsy mózg-komputer ustanowiły przełom w rozwoju współczesnych neuronauk i neurorehabilitacji. Niniejszy artykuł stanowi przegląd części technologii interfejsów mózg-komputer ukierunkowanej na sterowanie urządzeniami i systemami mechatronicznymi. Opisane zostały zarówno podstawowe rozwiązania z obszaru samych interfejsów, jak i przedyskutowane technologie mogące zapewnić sygnały sterujące dla urządzeń mechatronicznych. Pomimo ciągłego rozwoju problematyki wiele kwestii jest nierozwiązanych w zakresie udoskonalenia samych interfejsów oraz sklasyfikowania sygnałów sterujących
EN
Brain-computer interfaces (BCIs) have begun to constitute the another breakthrough in contemporary neuroscience and neurorehabilitation. This paper provides an overview of brain-computer interfaces (BCIs) technology that aims to address the priorities for control of mechatronic devices and systems. We describe basic solutions in the area of BCIs and discuss technologies that may provide command signals for mechatronic devices. Despite continuous development of the topic there still remains room for improvement, including future interfaces and control signal classification enhancements.
11
Content available Interfejs mózg-komputer jako moduł mechatroniczny
PL
Komunikacja z otoczeniem to jedna z podstawowych potrzeb człowieka, z zaspokojeniem której mają problem osoby niepełnosprawne i w podeszłym wieku, napotykając na bariery utrudniające im poruszanie się i przekaz werbalny. Interfejs mózg-komputer to urządzenie, które wykorzystuje oczyszczony i przetworzony sygnał bioelektryczny człowieka do komunikacji z urządzeniem bezprzewodowym. Pomaga zdiagnozować nieprawidłową pracę mózgu. Poprzez gry komputerowe rozwija refleks i uczy koncentracji. Zastosowany jako moduł mechatroniczny umożliwia sterowanie urządzeniami i systemami mechatronicznymi.
EN
Communication to envirnment constitutes one of the basis poaple's need. Meet of this need creates significant problem both for disabled people and elderly people due to mobility limitations and verbal communication limitations. Brain-computer interfaces (BCI) conctitutes device which uses filtered and processed human's bioelectrical signal to communicate to wireless device. It helps diagnise improper work of the brain. It also develops reflex and concentration thanks to BCI0controlled computer games. BCI-based mechatronic module allows to contorl mechatronic devices and systems.
EN
Nowadays, brain-computer interfaces are gaining more and more popularity. Research centers develop new methods of human communication with devices through thoughts. There are many methods used for this kind of interfaces, however, the most widespread is electroencephalography (EEG). There are many reasons for this fact, it is a method that is relatively cheap compared to other methods. Less complex technical tools and apparatus are required to operate it. Another advantage of this method, unlike others, is its non-invasiveness. Unfortunately, current brain-computer interfaces do not offer high data rates. However, time plays a smaller role when we are dealing with a disabled person who regains the ability to communicate with the world through the interface controlled by thoughts. This paper is the beginning of a series of papers in which the author will describe in detail the elements of brain-computer interfaces, as well as improvements that can be applied to them to improve their properties.
PL
W obecnych czasach interfejsy mózg-komputer zyskują coraz większą popularność. Ośrodki badawcze opracowują nowe metody komunikacji człowieka z urządzeniami za pomocą myśli. Jest wiele metod stosowanych do tego rodzajów interfejsów jednak najbardziej rozpowszechnioną jest Elektroencefalografia. Jest wiele powodów tego faktu, jest to metoda która jest stosunkowo tania w porównaniu z innymi metodami. Do jej obsługi wymagane są mniej złożone technicznie narzędzia i aparatura. Kolejnym atutem tej metody w przeciwieństwie do innych jest jej nieinwazyjność. Niestety obecne interfejsy mózg-komputer nie oferują wysokiej szybkości przesyłania danych. Jednak czas odgrywa mniejszą rolę gdy mamy do czynienia z osobą niepełnosprawną, która odzyskuję możliwość komunikacji ze światem za pomocą interfejsu sterowanego myślami. Niniejszy artykuł jest początkiem serii artykułów w których autor będzie szczegółowo opisywał elementy interfejsów mózg-komputer, a także usprawnienia jakie można do nich zastosować aby polepszyć ich właściwości.
PL
Potencjał stanu ustalonego (SSVEP - ang. Steady State Visually Evoked Potential) to odpowiedź mózgu na obserwowane stymulacje świetlne pojawiające się ze stałą częstotliwością. Podczas tego zjawiska w sygnale EEG (Elektroencefalogram) odbieranym z powierzchni czaszki w okolicach kory wzrokowej następuje znaczny wzrost mocy sygnału w częstotliwości z jaką pojawia się bodziec świetlny. W eksperymentach badających to zjawisko oraz interfejsach mózg-komputer (ang. BCI - Brain Computer Interface) bazujących na nim, stosuje się różne rozwiązania do wysyłania stymulacji. Wiodącymi metodami jest zastosowanie układów ze źródłem światła wykorzystującym diody elektroluminescencyjne (LED) lub wykorzystanie ekranów monitorów komputerowych (CRT, LCD). Niniejszy artykuł zawiera opis problemu oraz przegląd metod wykorzystywanych do wywoływania stymulacji na ekranie monitora.
EN
The Steady State Visually Evoked Potential (SSVEP) is the brain's response to the observed light stimulation occurring at a constant frequency. During this phenomenon in the EEG (Electroencephalogram) signal received from the skull surface near the visual cortex there is a significant increase in signal strength in the frequency with which the light stimulus appears. In experiments investigating this phenomenon as well as in Brain Computer Interfaces (BCI) based on it, various solutions are used to send stimulation. The leading methods are the use of systems with a light source using electroluminescent diodes (LED) or the use of computer screens (CRT, LCD). This article contains a description of the problem and an overview of the methods used to stimulate the monitor screen.
14
EN
Steady State Visual Evoke Potentials (SSVEPs) are responses of a human brain to outside periodical stimulations. Their particular feature is the fact that the frequency of brain response is the same as the stimulation frequency. This does not mean that SSVEP appears with any stimulation frequency. First of all, the stimulation frequencies evoking SSVEPs are subject-depended, and hence the same stimulation frequency can evoke a prominent SSVEP for one subject, and nothing at all for another one. Second, to evoke the brain response, the stimulus has to be strong enough and has to be delivered with a steady frequency. With brain-computer interfaces (BCIs), using SSVEPs as control signals, often the problem is how to provide a set of stimuli capable of evoking a large number of brain responses. In this paper a proposition of a low cost stimulation system delivering light stimuli is presented. The paper presents both, the structure of the proposed platform and the test results obtained with a real subject. 85 stimulation frequencies from 5 to 31.25Hz were tested during the experiment and for 47 of them the prominent SSVEPs were obtained.
PL
Wywołany potencjał wzrokowy stanu ustalonego (SSVEP) to odpowiedź ludzkiego mózgu na zewnętrzną okresowo pojawiającą się stymulację. Szczególną cechą tego rodzaju potencjałów jest fakt, że częstotliwość odpowiedzi jest taka sama jak częstotliwość bodźca. To nie oznacza jednak, że potencjał SSVEP wystąpi przy każdej częstotliwości bodźca. Po pierwsze, częstotliwości wywołujące SSVEP są zależne od indywidualnych cech badanego podmiotu Po drugie, aby wywołać odpowiedź mózgu, bodźce muszą być odpowiednio silne i muszą być dostarczane ze stałą częstotliwością. Jednym z problemów, który można napotkać w trakcie realizacji interfejsów mózg-komputer wykorzystujących SSVEP jako sygnały sterujące jest właśnie problem dokładnego generowania bodźców w jak największym zakresie częstotliwości. Niniejszy artykuł przedstawia propozycję nisko budżetowego systemu do generowania stymulacji świetlnych, który może zostać zastosowany w interfejsie mózgkomputer. W artykule przedstawiono zarówno sposób budowy systemu, jak i wyniki otrzymane w eksperymencie z rzeczywistym podmiotem. W trakcie eksperymentu wygenerowano 85 sekwencji bodźców o różnej częstotliwości stymulacji (w zakresie od 5 do 31.25 Hz). Dla 47 sekwencji bodźców uzyskano prawidłową odpowiedź mózgu (SSVEP).
15
Content available remote Development of a real time emotion classifier based on evoked EEG
EN
Our quality of life is more dependent on our emotions than on physical comforts alone. This is motivation enough to classify emotions using Electroencephalogram (EEG) signals. This paper describes the acquisition of evoked EEG signals for classification of emotions into four quadrants. The EEG signals have been collected from 24 subjects on three electrodes (Fz, Cz and Pz) along the central line. The absolute and differential attributes of single trial ERPs have been used to classify emotions. The single trial ERP attributes collected from each electrode have been used for developing an emotion classifier for each subject. The accuracy of classification of emotions into four classes lies between 62.5–83.3% for single trials. The subject independent analysis has been done using absolute and differential attributes of single trial signals of ERP. An overall accuracy of 55% has been obtained on Fz electrode for multi subject trials. The methodology used to classify emotions by fixing the attributes for classification of emotions brings us a step closer to developing a real time emotion recognition system with benefits including applications like Brain-Computer Interface for locked-in subjects, emotion classification for highly sensitive jobs like fighter pilots etc.
PL
Praca dotyczy obszaru badań związanych z pomiarami i przetwarzaniem sygnału elektroencefalograficznego oraz bezpośredniej komunikacji aktywacji mózgu z urządzeniem zewnętrznym za pomocą systemów zawierających interfejs mózg-komputer (ang. BCI - brain computer interface) w celu modyfikacji klasycznego podejścia metodycznego w sporcie. Osiąganie wyników sportowych zbliża się do granic przystosowania ustroju ludzkiego. Natomiast poszukiwanie kryteriów i wysokiej wartości diagnostycznej potencjału sportowego oraz określenie tej wartości z pewnością spełni funkcję predykcyjną w szkoleniu sportowym. Badania wskazują na to, że wdrożenie metody sprzężenia zwrotnego EEG do treningu sportowego wpływa na poprawę stanu funkcjonalnego organizmu, a w konsekwencji polepszenie wyników w sporcie.
EN
The paper concerns the research related to the measurement and electroencephalographic signal processing and direct communication of brain with an external device using a system containing a brain-computer interface (BCI) for the modification of the classical methodological approach in sport. Achieving better sports results is approaching the limits of adaptability of the human organism. Establishing reliable criteria and high value diagnostics of sport potential and determination of this value, will be a prediction factor in sports training. The implementation of the EEG biofeedback method in sports training will improve the functional status of the organism, and consequently, may contribute to better sport results.
PL
Odpowiedź mózgu na bodziec powtarzany ze stałą częstotliwością (np. migające światło diody LED) nazywana jest potencjałem stanu ustalonego (SSVEP ang. Steady State Visually Evoked Potential). W konsekwencji takiej stymulacji w sygnale EEG (Elektroencefalogram) rejestrowanym znad kory wzrokowej następuje wyraźny wzrost mocy w paśmie częstotliwości odpowiadającym częstotliwości bodźca stymulującego. Posiadając układ stymulujący, wyposażony w migającą z daną częstotliwością diodę LED oraz wykorzystując aparaturę do pomiaru EEG (elektrody pomiarowe umiejscowione na czaszce podmiotu badanego) możliwe jest skonstruowanie interfejsu mózg-komputer (BCI ang. Brain-Computer Interface), który może być z powodzeniem wykorzystany np. jako układ sterujący wózkiem inwalidzkim dla osób niepełnosprawnych. Użycie rozwiązania opartego na diodach LED, przy uwzględnieniu standardowego użytecznego zakresu częstotliwościowego sygnału EEG (5-30Hz), daje około 80 możliwych częstotliwości stymulacji. Stanowi to znaczny zbiór częstotliwości możliwych do wykorzystania na etapie uczenia się interfejsu BCI. Etap ten jest konieczny, aby wybrać charakterystyczne dla badanego podmiotu częstotliwości stymulacji dające jak najsilniejszą odpowiedź SSVEP. W artykule autor przedstawi metodę komunikacji w interfejsie BCI opartą na SSVEP z wykorzystaniem diody LED ze wskazaniem na najbardziej istotne parametry budowy układów stymulacyjnych.
EN
The response of the brain to a stimulus repeated with a constant frequency (eg. flashing LED), is called a Steady State Visually Evoked Potential (SSVEP). As a consequence of the stimulation, the EEG signal (electroencephalogram) recorded from the visual cortex shows a significant power increase in the frequency band corresponding to the stimulus frequency. That means that using a stimulation equipment (with LED flashing with the given frequency) and EEG device recording signals from electrodes placed on the subject’s skull, it is possible to construct the brain-computer interface (BCI). It can be used successfully e.g., as a control system for a wheelchair for disabled people. BCI based on LEDs provides a high number of possible stimulation frequencies. Considering the classic EEG frequency band (5-30 Hz) at least 80 different stimulation frequencies can be delivered by a single LED. This large set of frequencies is used at the BCI learning stage. This stage is necessary in order to select specific stimulation frequencies, which give the strongest SSVEP for a specific subject. In the article the author will present the method of communication in BCI interface based on the SSVEP using LEDs. The most important parameters of the stimulating systems will be indicated.
EN
The classic genetic algorithm has been successfully applied to many optimization problems. However, its usefulness is limited when it comes to feature selection, particularly if a high reduction rate is expected. The algorithm, in its classic version, returns feature sets containing approximately 50% of the total number of features. In order to decrease this rate, a penalty term penalizing individuals of too many features is often added to the fitness function. This solution seems to be reasonable but, as will be shown in this paper, provides only a slight improvement in the reduction rate. In order to obtain a satisfactory classification accuracy and a high reduction rate, not only the fitness function but also other algorithm elements must be reconsidered.
PL
Klasyczny algorytm genetyczny był z powodzeniem stosowany w wielu problemach optymalizacyjnych, jednakże jego użyteczność jest ograniczona w problemach selekcji cech, zwłaszcza jeżeli wymagana jest wysoka stopa redukcji cech. Algorytm, w jego klasycznej wersji, zwraca zbiory cech zawierające około 50% pierwotnej liczby cech. W celu zmniejszenia tej liczby, do funkcji przystosowania algorytmu dołącza się często człon kary, karzący osobniki kodujące zbiory o zbyt dużej liczbie cech. Takie rozwiązanie wydaje się być rozsądne, ale, jak zostanie to przedstawione w artykule pozwala jedynie na niewielką poprawę stopy redukcji. Stąd, w celu uzyskania satysfakcjonującej dokładności klasyfikacji i wysokiej stopy redukcji, nie tylko funkcja przystosowania, ale również inne elementy algorytmu muszą zostać wzięte pod uwagę.
PL
Celem opracowania jest zwięzłe opisanie zasad działania interfejsu mózg–komputer i przedstawienie jego możliwych zastosowań technicznych. Jest to współcześnie intensywnie rozwijany system mechatroniczny mierzący aktywność mózgu i generujący na jej podstawie sygnały sterujące dla urządzeń i maszyn. W artykule zawarto podstawowe informacje na temat ludzkiego mózgu, metod pomiaru jego aktywności, przetwarzania i klasyfikacji sygnałów. Przedstawiono różne możliwości realizacji interfejsu i jego zastosowania techniczne.
EN
The aim of this paper is to briefly describe principles of brain–computer interface and presentation of its possible technical applications. At this point in time is in mechatronics an intensively developing system, that measures brain activity and on this basis generates control signals for devices or machines. This article contains basic information about the human brain, its activity and measurement methods, processing and classification of signals. Different abilities were presented to the realization of the interface and using it technical.
PL
W artykule przedstawiono nowoczesną metodę komunikacji między człowiekiem a maszyną, w której wykorzystane są potencjały mózgowe – interfejs mózg–komputer. Opisano rozwój i właściwości metod komunikowania ludzkiego mózgu z urządzeniami i maszynami. Zaprezentowano projekt interfejsu, jakiego użyto do sterowania ruchem robota mobilnego. Aplikacja wykorzystuje elektroencefalografię, rolę sensora pełni komercyjny kask z suchymi elektrodami, umożliwiający pomiar poziomu pobudzenia i relaksu.
EN
The paper presents modern method of communication between human and a machine, using brain potentials – brain–computer interface. A development and properties of methods of human brain announcing with devices and machines were described. The project of interface used to control mobile robot was developed. Application was based on electroencephalography, dry headset enabling attention and relax level measuring was used as a sensor.
first rewind previous Strona / 3 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.