Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  boron-doped diamond
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Stabilized landfill leachate contains high fractions of refractory organics that cannot be effectively degraded by simple biological or physicochemical treatment. Thus, primary treatment was required to improve biodegradability and enhance treatment efficiency. This study investigated the role of Boron-Doped Diamond (BDD) and platinum (Pt) anodes at a current density of 29.2 and 33.3 mA/cm2 in the electrochemical processes for the pretreatment of stabilized leachate. A three-compartment electrochemical reactor was used in the research to enhance the removal of ionic pollutants. The pollutants were measured as total dissolved solids (TDS), chemical oxygen demand (COD), ammonium-nitrogen (NH4–N), and nitrite (NO2–). The reactor performance was then analyzed using a regular two-level factorial design. The results showed that the electrochemical process effectively removed organic and inorganic pollutants. The highest removal was obtained at 33.3 mA/cm2 using the BDD, measured around 48, 82, 60, and 79% for TDS, COD, NH4–N, and NO2–, respectively. Meanwhile, the specific energy consumption for COD removal was estimated to reach 1.5 and 1.55 Wh/g for BDD and Pt, respectively. These results imply that the type of anodes and applied current densities significantly influence the treatment efficiency.
EN
The main subject of this study are molecular structures and optical properties of boron-doped diamond films with [B]/[C]ppm ratio between 1000 and 10 000, fabricated in two molar ratios of CH4–H2 mixture (1 % and 4 %). Boron-doped diamond (BDD) film on the fused silica was presented as a conductive coating for optical and electronic purposes. The scanning electron microscopy images showed homogenous and polycrystalline surface morphology. The Raman spectroscopy confirmed the growth of sp3 diamond phase and sp2 carbon phase, both regular and amorphous, on the grain boundaries, as well as the efficiency of boron doping. The sp3/sp2 ratio was calculated using the Raman spectra deconvolution method. A high refractive index (in a range of 2.0 to 2.4 at λ = 550 nm) was achieved for BDD films deposited at 700 °C. The values of extinction coefficient were below 1.4 at λ = 550 nm, indicating low absorption of the film.
EN
Abstract A conductive boron-doped diamond (BDD) grown on a fused silica/quartz has been investigated. Diamond thin films were deposited by the microwave plasma enhanced chemical vapor deposition (MW PECVD). The main parameters of the BDD synthesis, i.e. the methane admixture and the substrate temperature were investigated in detail. Preliminary studies of optical properties were performed to qualify an optimal CVD synthesis and film parameters for optical sensing applications. The SEM micro-images showed the homogenous, continuous and polycrystalline surface morphology; the mean grain size was within the range of 100-250 nm. The fabricated conductive boron-doped diamond thin films displayed the resistivity below 500 mOhm cm-1 and the transmittance over 50% in the VIS-NIR wavelength range. The studies of optical constants were performed using the spectroscopic ellipsometry for the wavelength range between 260 and 820 nm. A detailed error analysis of the ellipsometric system and optical modelling estimation has been provided. The refractive index values at the 550 nm wavelength were high and varied between 2.24 and 2.35 depending on the percentage content of methane and the temperature of deposition.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.