Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 13

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  bone regeneration
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Chitosan (CS) is a polysaccharide readily used in tissue engineering due to its properties: similarity to the glycosaminoglycans present in the body, biocompatibility, non-toxicity, antibacterial character and owing to the fact that its degradation that may occur under the influence of human enzymes generates non-toxic products. Applications in tissue engineering include using CS to produce artificial scaffolds for bone regeneration that provide an attachment site for cells during regeneration processes. Chitosan can be used to prepare scaffolds exclusively from this polysaccharide, composites or polyelectrolyte complexes. A popular solution for improving the surface properties and, as a result enhancing cell-biomaterial interactions, is to coat the scaffold with layers of chitosan. The article focuses on a polysaccharide of natural origin – chitosan (CS) and its application in scaffolds in tissue engineering. The last part of the review focuses on bone tissue and interactions between cells and chitosan after implantation of a scaffold and how chitosan’s structure affects bone cell adhesion and life processes.
EN
The purpose of the study was to synthesize and characterize a series of porous polyurethane-based composites modified with β-tricalcium phosphate (TCP) and hydroxyapatite (HAp). The composites were obtained by the one-step bulk polyaddition method using poly(ethylene glycol) (PEG) as a soft segment, 4,4’-diphenylmethane diisocyanate (MDI), 1,4-butanediol (BDO) as a chain extender and selected bioactive bioceramics. The obtained composites were characterized using FTIR, DSC, TG and SEM/EDX methods. Moreover, in vitro chemical stability and wettability tests were performed. The preliminary assessment of mechanical properties, porosity and in vitro chemical stability was performed. The test results showed that the best pore distributions, as well as Young’s modulus, were found for the hydroxyapatite--modified composites and PU/20% TCP. The wettability investigations revealed that the contact angle of PU composites was in the range 50-80°, which indicates the hydrophobic nature of the materials. The in vitro biostability studies confirmed that all tested compo-sites were chemically stable during incubation in the simulated body fluid. By using infrared spectroscopy the presence of urethane bonds and completion of reaction were evidenced. The results showed that the bioactivity of the materials was improved, which makes good perspectives for the obtained materials to be considered as potential scaffolds in bone tissue regeneration.
EN
Different composite materials have been investigated in bone regeneration but none of them have a significant regeneration in a short time. In this study, the novel scaffold with the osteoinductive characteristic in order to accelerate bone regeneration for 6 weeks. Tadalafil/β-TCP/Collagen (TβC) and β-TCP/Collagen (βC) composite scaffolds were prepared and analyzed by porosity, biodegradability and MTT tests. And then, three bone defects (8 mm diameter, n = 6 group) were produced and filled with TβC, βC scaffolds and the third defect was unfilled as a control. Samples were taken and evaluated by histological, radiological and histomorphometric evaluation at 4 and 6 weeks. In vitro tests showed that both scaffold approximately had the same results in the percentage of porosity and in vitro cytotoxicity. Biodegradability of the βC scaffold was more than TβC scaffold. In vivo test showed bone regeneration was more in TβC scaffold at 6 weeks based on radiological and histopathologic analysis compared with βC scaffold and control groups. Histomorphometric analysis showed that the amount of the bone regeneration was significant in TβC group in comparison βC and control groups (P < 0.05) at 6 weeks. This study highlights the promising application of TβC scaffold with Tadalafil for successful bone regeneration by enhancing osteogenesis.
8
Content available Mineralized hydrogels for bone regeneration
EN
Biomaterials for bone regeneration have predominantly been fabricated from inorganic substances such as various forms of calcium phosphate (CaP), e.g. hydroxyapatite, tricalcium phosphate and brushite. CaP materials are mechanical stable and bioactive, i.e. they form a direct bone with surrounding bone tissue. However, such pure CaP materials have certain drawbacks. They are brittle, difficult to handle in granulate form and difficult to shape in block form. Furthermore, the incorporation of biologically active substances is not easy. Hydrogels are highly hydrated three-dimensional polymer networks that are formed by crosslinking of polymer chains in solution. Hydrogels have been widely used as vehicles for drug delivery and are being used increasingly as biomaterials for tissue regeneration. As their main component is water, they have many advantages over pure inorganic materials. Firstly, the incorporation of water-soluble biologically active substances to promote tissue growth (e.g. growth factors) or to combat infection (e.g. antibiotics) is straightforward. Secondly, they are much less brittle. Thirdly, they can be implanted in a minimally invasive manner by injection, as they can undergo gelation, i.e. the transition from liquid to solid, after injection. However, their main disadvantage also stems from the fact that the mail component is water: hydrogels are mechanically weak. In order to combine the advantages of inorganic and hydrogel biomaterials, attention has recently been focused on the development of composites on the basis of mineralized hydrogels. Several strategies have been tried [1]. The most common strategy is the addition of preformed inorganic particles to the polymer solution before gelation, after which the particles remain entrapped in the crosslinked polymer network. Ideally, the particles can be distributed homogeneously in the hydrogel. The gelation process can be induced by addition of inorganic particles. For example, the addition of bioactive glass particles to a solution of the anionic polysaccharide gellan gum results in hydrogel formation due to release of ions from the particles [2]. In other words, the particles serve as an “ion-delivery system” to provide homogeneous gelation. Another strategy is to promote precipitation of the inorganic phase in the hydrogel by increasing the concentration of ions. This can be achieved biomimetically using the enzyme alkaline phosphatase (ALP) which is responsible for the mineralization of bone tissue in vivo by cleaving phosphate ions from organophosphate and thus increasing the local phosphate concentration, which in turn promotes CaP precipitation [3]. Yet another strategy is the incorporation of calcium- or phosphate-binding molecules in the hydrogel, in order to increase localion concentrations and promote CaP precipitation. Once such biomolecule is polydopamine, which binds calcium ions [4]. An added flexibility of mineralized hydrogels is the possibility of manipulation of either the hydrogel phase, or the inorganic phase, or both. For example, in the case of a hydrogel mineralized with CaP, the inorganic phase may be modified by incorporation of magnesium in order to promote adhesion and proliferation of bone-forming cells [5], or by incorporation of zinc in order to endow antibacterial activity [6]. Alternatively, the hydrogel phase may be modified by incorporation of biologically active molecules such as polyphenols, which both bind calcium ions and exhibit antibacterial activity [7]. Mineralization strategies will be illustrated on the basis of previous work [1-7].
PL
Przedstawiono wstępne badania symulacyjne MES dotyczące analizy pola odkształceń i ciśnienia hydrostatycznego w regeneracie kostnym powstałym w wyniku wydłużania kości. Analizowano wpływ osiowych i poprzecznych przemieszczeń odłamów kostnych na rozkład odkształceń w przestrzeni międzyodłamowej. Uzyskane z przeprowadzonych symulacji wyniki pokazują, że szczególnie poprzeczne przemieszczenia odłamów kostnych generują w regeneracie kostnym złożony stan odkształcenia charakteryzujący się zróżnicowaniem zarówno, co do wartości jak i charakteru oraz dużym gradientem zmian.
EN
The aim ofthis paper is preliminary FEM simulations present. This study concern strain and hydrostatic pressure analysis in callus on the function of bone fragments displacements. Axial bone fragments displacements take into consideration. On the basis of FEM simulations one may say thai axial displacements of bone fragments very difficult slate of strain and hydrostatic pressure generale, This slate of strain and hydrostatic pressure are very diverse for the sake of his character and value.
PL
Postęp w regeneracji kości jest wymuszany przez opracowanie licznych materiałów zastępczych na osnowie meta/u, ceramiki lub polimerów. Bioaktywna ceramika wiąże się z żywą kością poprzez warstwę apatytu podobnego jak w kości, który w otoczeniu biologicznym tworzy się na jej powierzchni, zawierając drobnokrystaliczny, węglanowy hydroksyapatyt o zdefektowanej strukturze. Uważa się, że powstawanie tego apatytu jest nieodzowne dla utworzenia silnych wiązań chemicznych będących „conditio sine qua non" mocnego złącza implantu z kością. Celem pracy było uzyskanie takiej modyfikacji chemicznej implantu, aby in vivo na jego powierzchni można było łatwo wywołać zarodkowanie heterogeniczne i wzrost apatytu z naturalnego osocza. Testy laboratoryjne wykonano na handlowych preparatach czystego tytanu oraz kompozytach węgiel-węgiel. Po wstępnej obróbce, próbki pokrywano roztworami sol-gel tytano-krzemo-wapniowymi, krzemo-wapniowymi lub krzemowymi, a na koniec wygrzewano. Następnie termostatowano je w warunkach fizjologicznych mocząc w sztucznym (SBF) lub w naturalnym (NBF) osoczu do 30 dni. Występuje zgodność poglądów, że w SBF reakcje które in vivo zachodzą w obszarze powierzchni, są równie dobrze przebiegające in vitro. W tych warunkach apatyt podobny do kości odkładał się w procesie biomimetycznym, podobnym jak in vivo na materiałach bioaktywnych. Kolejne etapy wzrostu apatytu na powierzchni tytanu lub zmodyfikowanego węgla były dokumentowane metodą spektroskopii w podczerwieni. Metodą dyfrakcji rentgenowskiej ustalono skład fazowy osadów fosforanowych a morfologię i skład chemiczny badano stosując SEM-EDEX. Na badanych powierzchniach stwierdzono nukleację i wzrost apatytu zawierającego węglany. Był on wydajniejszy na powierzchniach krzemo-wapniowych i na tytano-krzemo-wapniowych niż na krzemowych. Zarodki apatytu zawierającego węglany powstawały i rosły pobierając jony wapniowe i fosforanowe z roztworu SBF. Osadzanie apatytu było wydajniejsze z NBF niź SBF. Ta obserwacja wzmacnia przypuszczenie, że białka również działają jako centra zarodkowania. Uzyskane obrazy powierzchni przypominały kalafior, praktycznie niezależne od użytego powiększenia. To własne podobieństwo mikro i makro kształtów potwierdza fraktalną naturę tej powierzchni, swoją drogą, rodzącej bardzo aktywne obszary powierzchniowe.
EN
Numerous bone substitutes made of metals, ceramics and polymers have been developed to promote bone regeneration. The bioactive ceramics bonds to bone through a layer of bone-like apatite which is formed on their surfaces in the body and is characterised by a carbonate-containing hydroxyapatite with small crystallites and defected structure It is believed that formation of this apatite is inevitable to form strong chemical bonds being conditio sine qua ~ non of the strong implant-bone joint. The aim of this work was to get such a chemical modification of the implant that in vivo conditions on its surface heterogeneous nucleation of apatite from the body fluid could be easily induced and grown. The laboratory experiments were carried on commercial pure titanium or carbon-carbon composite materials. After a preliminary treatment the samples were coated with titania-silica-calcium or silica-calcium or silica from sol-gel solutions and finally heated. Then they were soaked thermostatically under physiological conditions in the simulated body fluid (SBF) or in natural body fluid (NBF) for up to 30 days: it has already been observed that in the SBF reactions that in vivo would take place near the implant surface are in vitro well reproduced. In such conditions a bone-like apatite was deposited by the biomimetic process, similar to that, formed in vivo on bioactive materials. Consecutive steps of the apatite growth on titanium, or carbon-modified surfaces were monitored by infrared spectroscopy. XRD controled a phase state of phosphate precipitates after the soaking course. Morphology and chemical composition of phosphates were studied with SEM-EDEX. It was found that nucleation and growth of carbonate containing apatite took place at the surface: It was more effective on silica-calcium and on titania-silica-calcium than on silica substrates. Apatite nuclei containing carbonates were formed and they grew by uptake of calcium and phosphate ions from the SSF solution. The NBF, comparing with SBF much enhanced the apatite precipitation. This observation supports suggestion that also proteins can act as nucleation centres. The obtained pictures of the surface resembled cauliflower nearly independently of the magnification chosen. This self similarity in macro and micro shapes verifies the fractal nature of the surface which in turn, created very active surface area.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.