Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  bone drilling
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Recent innovations in robotics have enabled the development of automatic bone drilling tools which allows surgeons to improve the precision of their surgical operations. However, these tools still lack valuable tactile information about the material properties of the bone, preventing surgeons from making decisions while operating. The aim of this work is to explore whether robotic drilling tools can infer bone condition on the basis of certain key measures, particularly thrust force. Methods: To infer material properties in robotic bone drilling processes 1) a complete database of experimental operations with an automatic bone drilling tool is implemented and 2) binary logistic regression models are developed to estimate the type of material from the observed values (mainly the central tendency of the thrust force). This work compares three different materials: bovine bone specimens, porcine bone specimens and FullCure 720, which is a general-purpose resin with, a priori, much less feed resistance. The DRIBON automatic bone drilling tool developed at CEIT is used for the experiments. Results: The classification matrices derived using the logistic models show that it is possible to recognize a bovine bone vs. a porcine bone with a relatively high success rate rate (approximately 90%). In contrast, it is possible to recognize bone material vs. another material (in our case a resin) with a 100% of success. These results are successfully implemented in a new hand-held version of DRIBON. Conclusions: We propose a method and devise a novel hand-held tool which show that robotic systems can effectively infer bone material properties.
EN
Purpose: Bone drilling is a major part of orthopaedic surgery performed during the internal fixation of fractured bones. At present, information related to drilling force, drilling torque, rate of drill-bit penetration and drill-bit rotational speed is not available to orthopaedic surgeons, clinicians and researchers as bone drilling is performed manually. Methods: This study demonstrates that bone drilling force data if recorded in-vivo, during the repair of bone fractures, can provide information about the quality of the bone. To understand the variability and anisotropic behaviour of cortical bone tissue, specimens cut from three anatomic positions of pig and bovine were investigated at the same drilling speed and feed rate. Results: The experimental results showed that the drilling force does not only vary from one animal bone to another, but also vary within the same bone due to its changing microstructure. Drilling force does not give a direct indication of bone quality; therefore it has been correlated with screw pull-out force to provide a realistic estimation of the bone quality. A significantly high value of correlation (r 2 = 0.93 for pig bones and r 2 = 0.88 for bovine bones) between maximum drilling force and normalised screw pull-out strength was found. Conclusions: The results show that drilling data can be used to indicate bone quality during orthopaedic surgery.
EN
Due to temperature increase during bone drilling, bone necrosis is likely to occur. To minimize bone tissue damage during drilling, a detailed in vitro experimental study by using fresh calf cortical bones has been performed with various combined drilling parameters, such as: drilling environment, drill diameter, drill speed, drill force, feed-rate and drill coating. Bone temperatures at the drilling sites were recorded with high accuracy using multi-thermocouples mounted around the tibial diaphyseal cortex. It was shown that temperatures increased with increased drill speeds. It also decreased with a higher feed-rate and drill force. It was also observed that TiBN coated drills caused higher temperatures in the bone than the uncoated drills and the temperatures increased with larger drill diameters. Although the influence of Simulated Body Fluid (SBF) on rising temperatures during drilling was higher for the TiBN coated drills, it was observed that these drills caused more damage to the bone structure. In order to minimize or avoid bone defects and necrosis, orthopaedic surgeons should consider the optimum drilling parameters.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.