Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  bond length
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this study we tried to analyse how future teachers of Ecole Normale Supérieure (ENS) school who are at the end of education have integrated the specifications of covalent bonds in the different bond orders in terms of symmetry, stability, length, localisation (in the case of structures of ethane, ethylene and acetylene) or delocalisation of electrons (case of benzene). The analysis of responses to a written questionnaire shows that the majority of students have only integrated some knowledge, which may be termed as procedural, on the structural elements of molecules such as stability and the length of bonds. Although possessing some conceptual knowledge, students tend to use an alternative way of reasoning arising from the mental representation that single and multiple bonds are independent entities: the single bond is a ”σ bond” while the double bond is considered only as a ”π bond”.
EN
For the 16 selected nitramines, it is shown that an increase in the energy content of these molecules (represented by enthalpies of formation) is connected with an increase in the lengths of the longest N–N bonds in the molecules. These lengths are directly proportional to the activation energies of the low-temperature thermal decomposition of the pure nitramines in all states of matter for this reaction. Raising the energy content also leads to reductions in the rate constants of thermal decomposition. Both of these facts are in contrast to expectations and also with similar published findings concerning thermal decomposition of nitramines in solution, which can be explained by the solvation effect and termination of the emerging aza-radicals in solutions. The calculated dissociation energies of the weakest N–N bonds yielded a relatively good reciprocal conformity with the lengths of the longest N–N bonds of the nitramines studied, especially when using the UB3LYP/6-31G* method. The relationship between the impact sensitivity of these nitramines and the lengths of their longest N–N bond is not completely clear. Such lengths cannot be a measure of impact reactivity, because the longest N–N bond might be stabilized in some cases by suitable intermolecular interactions with adjacent molecules in the crystal lattice.
EN
Different methods are used for production of bronze bearings. In terms of technical specifications, the success of each of these methods depends on the bond’s strength and in terms of economic, the production method is important. In this study, the aim is to study the strength and microstructure of steel-bronze thrust bearing bond that has been produced through the casting using pre-mold. In this study, in order to bond, the raw metals are chemically washed with sulfuric acid solution for five minutes at first. Then, the molten bronze SAE660 is cast in a structural steel S235JR pre-mold. The bond’s strength has been measured using the shear test three times; the measurement of bond’s length has been done using field emission scanning electron microscope (FESEM). The results indicate that the strength of the bond is at least 94.8 MPa and bond’s length is 0.45 micrometers. Therefore, this method was successful for trust bearing application.
EN
The supersonic free-jet expansion technique is being used in different fields of research in physics, and physical chemistry to study vibrational and rotational molecular structures in ground and excited electronic energy states. The supersonic beam technique exploits a source of monokinetic, rotationally and vibrationally cold van der Waals (vdW) molecules that are very weakly bound in their ground electronic states. In this article we review experiments at the Jagiellonian University in Kraków (Poland) in which the supersonic free-jet beam serves as a source of ground-state vdW molecules in studies of neutral-neutral interactions between 12-group metal (Me = Zn, Cd, Hg) and 18-group noble gas (Ng = He, Ne, Ar, Kr, Xe) atoms. The experiments lead to determination of spectroscopical characteristics and interatomic potentials of MeNg and Me2 molecules, allowing determination of distinct trends in the Me-Ng and Me-Me interactions in different regions of internuclear separation. The determined interatomic potentials are also used in designing mechanisms of internal vibrational cooling of molecules photoassociated in magneto-optical traps. Recently, versatility of supersonic beams is confirmed in quantum information where the technique is planned to be used to create pairs of entangled atoms in experiments dedicated for testing of Bell's inequality for atoms. A purpose of the experiment - which is in a preparational stage in our laboratory - is to create pairs of entangled cadmium atoms with regard to their nuclear spin orientations. It is planned to be achieved in supersonic molecular beams of cadmium dimers using two dye-laser pulses and stimulated Raman process leading to a controlled photodissociation of the molecule.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.