Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  bond dissociation energy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Furazanyl ether has great potential to be an important candidate as a casting explosive and energetic plasticizer. The density functional theory (DFT) method was used to investigate the heats of formation (HOFs), molecular stability, detonation performance and melting point of a series of substituted furazanyl ethers at B3LYP/6-311G(d,p) level. The results show that the introduction of –N3 or –N(O)=N– groups significantly improves the HOFs values of the derivatives. The bond dissociation energies (BDEs) were analyzed, showing that the N–O bond in the furazan ring is the weakest for most compounds and the ring is vulnerable to cleavage in thermal decomposition. The calculation of density, detonation velocities and detonation pressures suggests that the substitution of –NF2, –CF(NO2)2, furoxan or –N(O)=N– group is an effective method for enhancing their detonation performance. The melting points were determined according to the variation of specific heat capacity, and good estimates were obtained in comparison with the available experimental data. Taking into account the detonation performance and melting point, four compounds are favoured for application in melt cast explosive or energetic plasticizers.
EN
Seven novel energetic 4,7-dinitro-furazano-[3,4-d]-pyridazine derivatives were designed, and their optimized structures and performances were studied by density functional theory (DFT) at B3LYP/6-311g(d,p) level. The detonation performances were estimated by the Kamlet-Jacobs equations. The results show that these compounds have high crystal densities (1.818-1.925 g·cm−3), detonation velocities (8.51-9.56 km·s−1) and detonation pressures (32.28-41.70 GPa). The bond dissociation energies (BDEs) of the weakest bond (N–O bond) vary from 70.889 kJ·mol−1 to 173.283 kJ·mol−1, and some of them exhibit higher BDEs than that of RDX (N–NO2 bond, 149.654 kJ·mol−1) and HMX (N–NO2 bond, 154.905 kJ·mol−1). M4 and M5 exhibit similar and higher detonation performance than RDX (8.81 km·s−1, 34.47 GPa). The detonation performance of M7 (9.56 km·s−1, 41.70 GPa) even surpasses that of HMX (9.10 km·s−1, 39.00 GPa). Otherwise, the specific impulse values of M1-M7 (266-279 s) outperform HMX (266 s) by 0-13 s, which indicates that M1-M7 may show better performance as monopropellants. It is concluded that density, heat of formation, stability, detonation performance and specific impulse of the designed compounds depend on the position and number of the N→O oxidation bonds.
EN
Homolytic dissociation of C-NO2 bond represents the primary fssion process of nitroaromatic compounds under thermal, impact, shock and electric spark initiation stimuli. Homolytic bond dissociation energies BDE(C-NO2) describe the C-NO2 bond fssion. Theoretical calculations of BDEs are substantially infuenced by inadequate treatment of electron correlation. Recently the alternative method was suggested to overcome this substantial drawback – an isodesmic reaction RC-NO2 + SC-H → RC-H + SC-NO2 where SC-NO2 is standard nitroaromatic compound. This reaction is characterized by bond disproportionation energy DISP(C-NO2), which inherently cancels the electron correlation effect accompanying homolytic bond dissociation energies. The bond disproportionation energies DISP(C-NO2) and bond dissociation energies BDE(C-NO2) were evaluated for 11 nitro benzenes and 19 nitro toluenes at DFT B3LYP/6-311+G(d,p) level and correlated with their detonation velocities, D, and with charge of the most reactive nitro group, Q(NO2).
4
Content available remote Electric Spark Sensitivity of Nitramines. Part I. Aspects of Molecular Structure
EN
An ESZ KTTV instrument of a new, relatively simple construction has been applied to determination of electric spark sensitivity (EES) of 16 nitramines. Results obtained are compared with those from measurements by means of an older RDAD instrument. Attention was focused both on the relationships between the EES values from both the instruments and theoretical B3LYP/6-311+G(d,p) N-NO2 bond dissociation energies, B3LYP/6-31G(d,p) Mulliken net charges of the nitro group, heats of fusion and 15N NMR chemical shifts of the nitrogen atoms of the most reactive nitro groups, respectively. It is stated a larger difference between results of both instruments. The EES values from both the instruments correlate with such characteristics of molecular structure which correspond to the primarily leaving nitro group in the nitramine molecule. It has been found that these relationships for ESZ KTTV results are strongly affected by molecular structure factors. It is also pointed out that the dislocations in the crystals should have some relation to electric spark sensitivity.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.