Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  blood vessel segmentation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The morphological properties of retinal vessels are closely related to the diagnosis of ophthalmic diseases. However, many problems in retinal images, such as complicated directions of vessels and difficult recognition of capillaries, bring challenges to the accurate segmentation of retinal blood vessels. Thus, we propose a new retinal blood vessel segmentation method based on a dual-channel asymmetric convolutional neural network (CNN). First, we construct the thick and thin vessel extraction module based on the morphological differences in retinal vessels. A two-dimensional (2D) Gabor filter is used to perceive the scale characteristics of blood vessels after selecting the direction of blood vessels; thereby, adaptively extracting the thick vessel features characterizing the overall characteristics and the thin vessel features preserving the capillaries from fundus images. Then, considering that the single-channel network is unsuitable for the unified characterization of thick and thin vessels, we develop a dual-channel asymmetric CNN based on the U-Net model. The MainSegment-Net uses the step-by-step connection mode to achieve rapid positioning and segmentation of thick vessels; the FineSegment-Net combines dilated convolution and the skip connection to achieve the fine extraction of thin vessels. Finally, the output of the dual-channel asymmetric CNN is fused and coded to combine the segmentation results of thick and thin vessels. The performance of our method is evaluated and tested by DRIVE and CHASE_DB1. The results show that the accuracy (Acc), sensitivity (SE), and specificity (SP) of our method on the DRIVE database are 0.9630, 0.8745, and 0.9823, respectively. The evaluation indexes Acc, SE, and SP of the CHASE_DB1 database are 0.9694, 0.8916, and 0.9794, respectively. Additionally, our method combines the biological vision mechanism with deep learning to achieve rapid and automatic segmentation of retinal vessels, providing a new idea for diagnosing and analyzing subsequent medical images.
2
Content available remote A hybrid method for blood vessel segmentation in images
EN
In the last years, image processing has been an important tool for health care. The analysis of retinal vessel images has become crucial to achieving a better diagnosis and treatment for several cardiovascular and ophthalmological deceases. Therefore, an automatic and accurate procedure for retinal vessel and optic disc segmentation is essential for illness detection. This task is extremely hard and time-consuming, often requiring the assistance of human experts with a high degree of professional skills. Several retinal vessel segmentation methods have been developed with satisfactory results. Nevertheless, most of such techniques present a poor performance mainly due to the complex structure of vessels in retinal images. In this paper, an accurate methodology for retinal vessel and optic disc segmentation is presented. The proposed scheme combines two different techniques: the Lateral Inhibition (LI) and the Differential Evolution (DE). The LI scheme produces a new image with enhanced contrast between the background and retinal vessels. Then, the DE algorithm is used to obtain the appropriate threshold values through the minimization of the cross-entropy function from the enhanced image. To evaluate the performance of the proposed approach, several experiments over images extracted from STARE, DRIVE, and DRISHTI-GS databases have been conducted. Simulation results demonstrate a high performance of the proposed scheme in comparison with similar methods reported in the literature.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.