This paper presents a Clustering Based Blind Channel Estimator for a special case of sparse channels - the zero pad channels. The proposed algorithm uses an unsupervised clustering technique for the estimation of data clusters. Clusters labelling is performed by a Hidden Markov Model of the observation sequence appropriately modified to exploit channel sparsity. The algorithm achieves a substantial complexity reduction compared to the fully evaluated technique. The proposed algorithm is used in conjunction with a Parallel Trellis Viterbi Algorithm for data detection and simulation results show that the overall scheme exhibits the reduced complexity benefits without performance reduction.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.