Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  bioremoval
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The synthetic dye industry is a significant source of anthropogenic pollutants emitted into many water bodies across the world. Bioremoval is a substitute for industrial techniques for detoxifying dye-contaminated water. Green algae is an abundant microorganism processing to produce cost-effective, eco-friendly, and high-quality method to bioremediation by immobilization technique. In this present study, The effectiveness of the immobilized green alga Chlorella vulgaris to eliminate Congo red dye in both water and wastewater was assessed through the biodegradation Process under various conditions, including pH, concentration of dye, contact time, and NaCl. The results revealed that the removal increased with increasing contact duration, with the maximum bioremoval percentage occurring at 89.6% at a contact time of 13 days. The removal effectiveness of dye as the number of beads of immobilized C.vulgaris algae grew; the highest removal efficiency was achieved at 7–8 beads of immobilized C.vulgaris algae. There was also an inverse relationship between bioremoval and dye concentration; the maximum removal percentage was 90.1% at 0.1 M dye concentration. The highest removal efficiency was found in the range (91.3–86) at pH 6–7. The bioremoval of Congo red dye was similar in fresh and salinity water (87.2% and 85.3%, respectively). This study observed high removal efficiency for immobilized algae to Congo red under different concentrations of NaCl as an indicator of salinity, ranging between 85.3 and 87.2%.
EN
Standards for highly toxic and carcinogenic pollutants impose strict guidelines, requiring values close to zero, regarding the degradation of such pollutants in industrial streams. In many cases, classic bioremoval processes fail. Therefore, we proposed a stream leaving the microbial membrane bioreactor (MBR) that is directed to an additional membrane separation mode (NF/RO). Under certain conditions, the integrated process not only benefits the environment but may also increase the profitability of the bioreactor operation. An appropriate model was developed and tested in which the bioremoval of benzene and toluene by Pseudomonas fluorescens was used as an example. This paper presents equations for selecting the operation parameters of the integrated system to achieve the expected degree of industrial wastewater purification.
3
Content available remote Chromium and phosphorus removal by blue-green algae Spirulina
EN
Chromium (III) and (VI), as well as phosphorus uptake from aqueous solutions by viable Spirulina, a prokaryotic algae, was tested under laboratory conditions as a function of time and initial chromium and phosphorus concentration. Effluent treatment efficiency of effluents containing chromium and phosphorus was evaluated and the results were compared with parameters given by law standards. Heavy metals removal by Spirulina spp. occurs on highly developed surface area and metal transport into the cell interior as well as by metabolic activity. A feature supporting wastewater treatment is the ability of organic compounds degradation and phosphorus, as well as nitrogen compounds removal. Chemical and thermal biomass analysis shows a real basis for Spirulina ash, containing up to 25% of chromium application in chromium compounds production process. Laboratory results show that Spirulina biomass provides enough energy for the process to be cost satisfactory. The paper is an approach toward Spirulina involved industrial wastewater treatment technology.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.