Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  biophysics
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Biofotonika jest dziedziną na pograniczu biologii i fotoniki. Jest obszarem badawczym i aplikacyjnym obejmującym zjawiska i procesy, substancje, obiekty w skali rozmiarowej od nanometrów do makro, jak wirusy, molekuły, organelle, komórki, bakterie, membrany, tkanki, małe i większe organizmy, w aspekcie ich właściwości fotonicznych. Biofotonika obejmuje oprzyrządowanie laboratoryjne badawcze i standaryzowane kliniczne i ogólnego zastosowania. Aktywnym kierunkiem rozwoju biofotoniki jest jej gałąź kwantowa, gdzie badane są procesy zachodzące w nanoskali. Zainteresowanie tymi nanoprocesami, albo zawierającymi zjawisko fotoniczne, albo badane metodami fotonicznymi, bierze się z faktu że stanowią one często fundament procesów zachodzących i odzwierciedlanych potem w makroskali całego obiektu biologicznego. Cykl artykułów na temat biofotoniki jest skrótem wykładu prowadzonego przez autora na WEiTI Politechniki Warszawskiej dla studentów i doktorantów. Kolejna część cyklu dotyczy przeglądu wybranych aktualnych kierunków prac. Poprzednie części dotyczyły obszarów badawczych i korelacji biofotoniki z pokrewnymi dyscyplinami, procesów biofotonicznych, foto-biosubstancji, obiektów, spektroskopii, biofotonicznych technik laboratoryjnych, w tym mikroskopii i spektroskopii ultra-rozdzielczej.
EN
Biophotonics is a field on the border of biology and photonics. It is a research and application area covering phenomena and processes, substances, objects in the size scale from nanometers to macro, such as viruses, molecules, organelles, cells, bacteria, membranes, tissues, small and larger organisms, in terms of their photonic properties. Biophotonics includes research and standardized clinical and general-purpose laboratory instrumentation. An active direction in the development of biophotonics is its quantum branch, where processes that occur at the nanoscale are studied. The interest in these nanoprocesses, either containing a photonic phenomenon or studied with photonic methods, stems from the fact that they often constitute the foundation of processes that occur and are later reflected in the macroscale of the entire biological object. The series of articles on biophotonics is an abbreviation of a lecture delivered by the author at the Faculty of Electronics and Information Technology of the Warsaw University of Technology for M.Sc. and PhD students. This part of the series deals with a review of current research efforts. The previous parts concerned research areas and correlations of biophotonics with related disciplines, biophotonic processes, photobiosubstances, objects, spectroscopy, biophotonic laboratory assays and techniques.
PL
Biofotonika jest dziedziną na pograniczu biologii i fotoniki. Jest obszarem badawczym i aplikacyjnym obejmującym zjawiska i procesy, substancje, obiekty w skali rozmiarowej od nanometrów do makro, jak wirusy, molekuły, organelle, komórki, bakterie, membrany, tkanki, małe i większe organizmy, w aspekcie ich właściwości fotonicznych. Biofotonika obejmuje oprzyrządowanie laboratoryjne badawcze i standaryzowane kliniczne i ogólnego zastosowania. Aktywnym kierunkiem rozwoju biofotoniki jest jej gałąź kwantowa, gdzie badane są procesy zachodzące w nanoskali. Zainteresowanie tymi nanoprocesami, albo zawierającymi zjawisko fotoniczne, albo badane metodami fotonicznymi, bierze się z faktu że stanowią one często fundament procesów zachodzących i odzwierciedlanych potem w makroskali całego obiektu biologicznego. Cykl artykułów na temat biofotoniki jest skrótem wykładu prowadzonego przez autora na WEiTI Politechniki Warszawskiej dla studentów i doktorantów. Kolejna część cyklu dotyczy teranostyki fotodynamicznej. Poprzednie części dotyczyły obszarów badawczych i korelacji biofotoniki z pokrewnymi dyscyplinami, procesów biofotonicznych, foto-biosubstancji, obiektów, spektroskopii, biofotonicznych technik laboratoryjnych, w tym mikroskopii i spektroskopii ultra-rozdzielczej.
EN
At Biophotonics is a field on the border of biology and photonics. It is a research and application area covering phenomena and processes, substances, objects in the size scale from nanometers to macro, such as viruses, molecules, organelles, cells, bacteria, membranes, tissues, small and larger organisms, in terms of their photonic properties. Biophotonics includes research and standardized clinical and general-purpose laboratory instrumentation. An active direction in the development of biophotonics is its quantum branch, where processes that occur at the nanoscale are studied. The interest in these nanoprocesses, either containing a photonic phenomenon or studied with photonic methods, stems from the fact that they often constitute the foundation of processes that occur and are later reflected in the macroscale of the entire biological object. The series of articles on biophotonics is an abbreviation of a lecture delivered by the author at the Faculty of Electronics and Information Technology of the Warsaw University of Technology for M.Sc. and PhD students. This part of the series deals withphotodynamic theranostics. The previous parts concerned research areas and correlations of biophotonics with related disciplines, biophotonic processes, photo-biosubstances, objects, spectroscopy, biophotonic laboratory assays and techniques.
PL
Biofotonika jest dziedziną na pograniczu biologii i fotoniki. Jest obszarem badawczym i aplikacyjnym obejmującym zjawiska i procesy, substancje, obiekty w skali rozmiarowej od nanome trów do makro, jak wirusy, molekuły, organella, komórki, bakterie, membrany, tkanki, małe i większe organizmy, w aspekcie ich wła ściwości fotonicznych. Biofotonika obejmuje oprzyrządowanie laboratoryjne badawcze i standaryzowane kliniczne i ogólnego zastosowania. Aktywnym kierunkiem rozwoju biofotoniki jest jej gałąź kwantowa, gdzie badane są procesy zachodzące w nano skali. Zainteresowanie tymi nanoprocesami, albo zawierającymi zjawisko fotoniczne, albo badane metodami fotonicznymi, bierze się z faktu że stanowią one często fundament procesów zacho dzących i odzwierciedlanych potem w makroskali całego obiektu biologicznego. Cykl artykułów na temat biofotoniki jest skrótem wy kładu prowadzonego przez autora na WEiTI Politechniki Warszaw skiej dla studentów i doktorantów. Kolejna część cyklu dotyczy optogenetyki. Poprzednie części dotyczyły obszarów badawczych i korelacji biofotoniki z pokrewnymi dyscyplinami, procesów bio fotonicznych, foto-biosubstancji, obiektów, spektroskopii, biofoto nicznych technik laboratoryjnych, w tym mikroskopii i spektroskopii ultra-rozdzielczej.
EN
Biophotonics is a field on the border of biology and photonics. It is a research and application area covering phenomena and processes, substances, objects in the size scale from nanometers to macro, such as viruses, molecules, organelles, cells, bacteria, membranes, tissues, small and larger organisms, in terms of their photonic properties. Biophotonics includes research and standar dized clinical and general-purpose laboratory instrumentation. An active direction in the development of biophotonics is its quantum branch, where processes that occur at the nanoscale are studied. The interest in these nanoprocesses, either containing a photo nic phenomenon or studied with photonic methods, stems from the fact that they often constitute the foundation of processes that occur and are later reflected in the macroscale of the entire biological object. The series of articles on biophotonics is an abbreviation of a lecture delivered by the author at the Faculty of Electronics and Information Technology of the Warsaw University of Technology for M.Sc. and PhD students. This part of the series deals with optogenetics. The previous parts concerned research areas and correlations of biophotonics with related disciplines, biophotonic processes, photo-biosubstances, objects, spectro scopy, biophotonic laboratory assays and techniques.
PL
Postępy w funkcjonalizacji zjawisk kwantowych, co ujęto w dyscyplinę określaną jako informacyjne techniki kwantowe ITK, stanowią istotny element rozwoju zupełnie odmiennych dyscyplin, w tym biofotoniki kwantowej. Jednym z ważnych technik badawczych w biologii jest wykrywanie słabego światła używanego w systemowych badaniach biologicznych, testach biologicznych, bioprodukcji, a także w diagnostyce medycznej. Opanowanie technik generacji na żądanie, a szczególnie detekcji pojedynczych fotonów, w połączeniu z kwantowo-optycznymi metodami przetwarzania danych otwarło fundamentalnie nowe fotoniczne możliwości metrologiczne związane z obserwacją warunków zjawisk bio-optycznych w pojedynczej molekule. W tym właśnie obszarze ultra-precyzyjnych optycznych pomiarów pojedynczej molekuły została przyznana Nagroda Nobla z Chemii w roku 2014 - super-rozdzielcza mikroskopia fluorescencyjna. Od tego czasu badania i zastosowania w obszarze biofotoniki kwantowej znacznie rozszerzyły się, obejmując wiele technik mikroskopowych, tomograficznych, obrazowania, ultra-czułej detekcji biochemicznej, ultra-precyzyjnej fotonicznej manipulacji molekularnej. Biofotonika kwantowa rozwija się dynamicznie jako wspólny obszar biologii kwantowej i optyki kwantowej. Poprzez wyposażenie instrumentalne, pomiarowe i aplikacyjno-funkcjonalizujące, biofotonika kwantowa jest ściśle związana z takimi dyscyplinami jak inżynieria biomedyczna, fizyka biomedyczna, biochemia, metrologia optyczna i elektroniczna oraz ICT.
EN
Advances in the functionalization of quantum phenomena, which are now included in the discipline known as quantum information techniques, constitute an important element in the development of completely different disciplines, including quantum biophotonics. One of the important research techniques in biology is the detection of low light used in system biological research, bioassays, bioproduction as well as in medical diagnostics. Mastering the techniques of generation on demand, and especially the detection of single photons, combined with quantum-optical methods of data processing, opened fundamentally new photonic metrological possibilities related to the observation of the conditions of bio-optical phenomena in a single molecule. It was in this area of ultra-precise optical measurements of a single molecule that the Nobel Prize in Chemistry in 2014) super-resolved fluorescence microscopy) was awarded. Since then, research and applications in the field of quantum biophotonics have significantly expanded to include many techniques of microscopy, tomography, imaging, ultra-sensitive biochemical detection, and ultra-precise photonic molecular manipulation. Quantum biophotonics is developing dynamically as a common area of quantum biology and quantum optics. Through instrumental, measuring and application-functionalizing equipment, quantum biophotonics is closely related to biomedical engineering, bio- medical physics, biochemistry, optical and electronic metrology, and ICT.
PL
Biofotonika jest dziedziną na pograniczu biologii i fotoniki. Jest obszarem badawczym i aplikacyjnym obejmującym zjawiska i procesy, substancje, obiekty w skali rozmiarowej od nanometrów do makro, jak wirusy, molekuły, organella, komórki, bakterie, membrany, tkanki, małe i większe organizmy, w aspekcie ich właściwości fotonicznych. Biofotonika obejmuje oprzyrządowanie laboratoryjne badawcze i standaryzowane kliniczne i ogólnego zastosowania. Aktywnym kierunkiem rozwoju biofotoniki jest jej gałąź kwantowa, gdzie badane są procesy zachodzące w nanoskali. Zainteresowanie tymi nanoprocesami, albo zawierającymi zjawisko fotoniczne, albo badane metodami fotonicznymi, bierze się z faktu że stanowią one często fundament procesów zachodzących i odzwierciedlanych potem w makroskali całego obiektu biologicznego. Cykl artykułów na temat biofotoniki jest skrótem wykładu prowadzonego przez autora na WEiTI Politechniki Warszawskiej dla doktorantów. Kolejna część cyklu dotyczy obrazowania bliskiego pola i mikroskopii z sondą skanującą SPM. Poprzednie części dotyczyły obszarów badawczych i korelacji biofotoniki z pokrewnymi dyscyplinami, procesów biofotonicznych, foto-biosubstancji, obiektów, spektroskopii, biofotonicznych technik laboratoryjnych, w tym mikroskopii i spektroskopii ultra-rozdzielczej.
EN
Biophotonics is a field on the border of biology and photonics. It is a research and application area covering phenomena and processes, substances, objects in the size scale from nanometers to macro, such as viruses, molecules, organelles, cells, bacteria, membranes, tissues, small and larger organisms, in terms of their photonic properties. Biophotonics includes research and standardized clinical and general-purpose laboratory instrumentation. An active direction in the development of biophotonics is its quantum branch, where processes that occur at the nanoscale are studied. The interest in these nanoprocesses, either containing a photonic phenomenon or studied with photonic methods, stems from the fact that they often constitute the foundation of processes that occur and are later reflected in the macroscale of the entire biological object. The series of articles on biophotonics is an abbreviation of a lecture delivered by the author at the Faculty of Electronics and Information Technology of the Warsaw University of Technology for PhD students. This part of the series deals with the issues of near field and SPM bio-imaging. The previous parts concerned research areas and correlations of biophotonics with related disciplines, biophotonic processes, photo-biosubstances, objects, spectroscopy, biophotonic laboratory assays and techniques.
PL
Biofotonika jest dziedziną na pograniczu biologii i fotoniki. Jest obszarem badawczym i aplikacyjnym obejmującym zjawiska i procesy, substancje, obiekty w skali rozmiarowej od nanometrów do makro, jak wirusy, molekuły, organella, komórki, bakterie, membrany, tkanki, małe i większe organizmy, w aspekcie ich właściwości fotonicznych. Biofotonika obejmuje oprzyrządowanie laboratoryjne badawcze i standaryzowane kliniczne i ogólnego zastosowania. Aktywnym kierunkiem rozwoju biofotoniki jest jej gałąź kwantowa, gdzie badane są procesy zachodzące w nanoskali. Zainteresowanie tymi nanoprocesami, albo zawierającymi zjawisko fotoniczne, albo badane metodami fotonicznymi, bierze się z faktu że stanowią one często fundament procesów zachodzących i odzwierciedlanych potem w makroskali całego obiektu biologicznego. Cykl arykułów na temat biofotoniki jest skrótem wykładu prowadzonego przez autora na WEiTI Politechniki Warszawskiej dla doktorantów. Kolejna część cyklu dotyczy obrazowania nieliniowego wielofotonowego, bliskiego pola i SPM. Poprzednie części dotyczyły obszarów badawczych i korelacji biofotoniki z pokrewnymi dyscyplinami, procesów biofotonicznych, foto-biosubstancji, obiektów, spektroskopii, biofotonicznych technik laboratoryjnych, w tym mikroskopii i spektroskopii ultra-rozdzielczej.
EN
Biophotonics is a field on the border of biology and photonics. It is a research and application area covering phenomena and processes, substances, objects in the size scale from nanometers to macro, such as viruses, molecules, organelles, cells, bacteria, membranes, tissues, small and larger organisms, in terms of their photonic properties. Biophotonics includes research and standardized clinical and general-purpose laboratory instrumentation. An active direction in the development of biophotonics is its quantum branch, where processes that occur at the nanoscale are studied. The interest in these nanoprocesses, either containing a photonic phenomenon or studied with photonic methods, stems from the fact that they often constitute the foundation of processes that occur and are later reflected in the macroscale of the entire biological object. The series of articles on biophotonics is an abbreviation of a lecture delivered by the author at the Faculty of Electronics and Information Technology of the Warsaw University of Technology for PhD students. This part of the series deals with the issues of nonlinear, multiphoton, near field and SPM bio-imaging. The previous parts concerned research areas and correlations of biophotonics with related disciplines, biophotonic processes, photo-biosubstances, objects, spectroscopy, biophotonic laboratory assays and techniques.
PL
Biofotonika jest dziedziną na pograniczu biologii i fotoniki. Jest obszarem badawczym i aplikacyjnym obejmującym zjawiska i pro cesy, substancje, obiekty w skali rozmiarowej od nanometrów do makro, jak wirusy, molekuły, organella, komórki, bakterie, membra ny, tkanki, małe i większe organizmy, w aspekcie ich właściwości fotonicznych. Biofotonika obejmuje oprzyrządowanie laboratoryjne badawcze i standaryzowane kliniczne i ogólnego zastosowania. Aktywnym kierunkiem rozwoju biofotoniki jest jej gałąź kwantowa, gdzie badane są procesy zachodzące w nanoskali. Zainteresowa nie tymi nanoprocesami, albo zawierającymi zjawisko fotoniczne, albo badane metodami fotonicznymi, bierze się z faktu że stanowią one często fundament procesów zachodzących i odzwierciedla nych potem w makroskali całego obiektu biologicznego. Cykl ar tykułów na temat biofotoniki jest skrótem wykładu prowadzonego przez autora na WEiTI Politechniki Warszawskiej dla doktorantów. Kolejna część cyklu dotyczy obrazowania fotoakustycznego, ter moakustycznego i fototermalnego. Poprzednie części dotyczyły obszarów badawczych i korelacji biofotoniki z pokrewnymi dyscy plinami, procesów biofotonicznych, foto-biosubstancji, obiektów, spektroskopii, biofotonicznych technik laboratoryjnych, w tym mikroskopii i spektroskopii ultra-rozdzielczej.
EN
Biophotonics is a field on the border of biology and photonics. It is a research and application area covering phenomena and processes, substances, objects in the size scale from nanometers to macro, such as viruses, molecules, organelles, cells, bacteria, membranes, tissues, small and larger organisms, in terms of their photonic properties. Biophotonics includes research and standar dized clinical and general-purpose laboratory instrumentation. An active direction in the development of biophotonics is its quantum branch, where processes that occur at the nanoscale are studied. The interest in these nanoprocesses, either containing a photo nic phenomenon or studied with photonic methods, stems from the fact that they often constitute the foundation of processes that occur and are later reflected in the macroscale of the entire biological object. The series of articles on biophotonics is an abbreviation of a lecture delivered by the author at the Faculty of Electronics and Information Technology of the Warsaw Uni versity of Technology for PhD students. This part of the series deals with the issues of photoacoustics, thermoacoustics and photothermal imaging. The previous parts concerned research areas and correlations of biophotonics with related disciplines, biophotonic processes, photo-biosubstances, objects, spectro scopy, biophotonic laboratory assays and techniques.
PL
Biofotonika jest dziedziną na pograniczu biologii i fotoniki. Jest obszarem badawczym i aplikacyjnym obejmującym zjawiska i procesy, substancje, obiekty w skali rozmiarowej od nanome trów do makro, jak wirusy, molekuły, organella, komórki, bakterie, membrany, tkanki, małe i większe organizmy, w aspekcie ich wła ściwości fotonicznych. Biofotonika obejmuje oprzyrządowanie laboratoryjne badawcze i standaryzowane kliniczne i ogólnego zastosowania. Aktywnym kierunkiem rozwoju biofotoniki jest jej gałąź kwantowa, gdzie badane są procesy zachodzące na ogół w nanoskali. Zainteresowanie tymi nanoprocesami, albo zawierają cymi zjawisko fotoniczne, albo badane metodami fotonicznymi, bierze się z faktu że stanowią one często fundament procesów zachodzących i odzwierciedlanych potem w makroskali całego obiektu biologicznego. Cykl artykułów na temat biofotoniki jest skrótem wykładu prowadzonego przez autora na WEiTI Politechniki Warszawskiej dla doktorantów. Kolejna część cyklu dotyczy wyso korozdzielczego obrazowania biochemicznego łączącego domeny czasu, przestrzeni, energii, biochemii i biofizyki. Poprzednie części dotyczyły korelacji biofotoniki z pokrewnymi dyscyplinami, proce sów biofotonicznych, foto-biosubstancji, obiektów, spektroskopii, biofotonicznych technik laboratoryjnych.
EN
Biophotonics is a field on the border of biology and photonics. It is a research and application area covering phenomena and processes, substances, objects in the size scale from nanometers to macro, such as viruses, molecules, organelles, cells, bacteria, membranes, tissues, small and larger organisms, in terms of their photonic properties. Biophotonics includes research and standar dized clinical and general-purpose laboratory instrumentation. An active direction in the development of biophotonics is its quantum branch, where processes that usually occur at the nanoscale are studied. The interest in these nanoprocesses, either conta ining a photonic phenomenon or studied with photonic methods, stems from the fact that they often constitute the foundation of processes that occur and are later reflected in the macroscale of the entire biological object. The series of articles on biopho tonics is an abbreviation of a lecture given by the author at the Faculty of Economics and Information Technology of the Warsaw University of Technology for PhD students. The next part of the series deals with the issues of biochemical imaging combining domains of time, space, energy, biochemistry and biophysics. The previous parts concerned research areas and correlations of biophotonics with related disciplines, biophotonic processes, photo-biosubstances, objects, spectroscopy, biophotonic labo ratory techniques.
PL
Biofotonika jest dziedziną na pograniczu biologii i fotoniki. Jest obszarem badawczym i aplikacyjnym obejmującym zjawiska i procesy, substancje, obiekty w skali rozmiarowej od nanometrów do makro, jak wirusy, molekuły, organella, komórki, bakterie, membrany, tkanki, małe i większe organizmy, w aspekcie ich właściwości fotonicznych. Biofotonika obejmuje oprzyrządowanie laboratoryjne badawcze i standaryzowane kliniczne i ogólnego zastosowania. Aktywnym kierunkiem rozwoju biofotoniki jest jej gałąź kwantowa, gdzie badane są procesy zachodzące na ogół w nanoskali. Zainteresowanie tymi nanoprocesami, albo zawierającymi zjawisko fotoniczne, albo badane metodami fotonicznymi, bierze się z faktu że stanowią one często fundament procesów zachodzących i odzwierciedlanych potem w makroskali całego obiektu biologicznego. Cykl artykułów na temat biofotoniki jest skrótem wykładu prowadzonego przez autora na WEiTI Politechniki Warszawskiej dla doktorantów. Kolejna część cyklu dotyczy obrazowania wysoko rozdzielczego, poniżej limitu dyfrakcyjnego Abbego. Poprzednie części dotyczyły obszarów badawczych i korelacji biofotoniki z pokrewnymi dyscyplinami, procesów biofotonicznych, foto-biosubstancji, obiektów, spektroskopii, biofotonicznych technik laboratoryjnych.
EN
Biophotonics is a field on the border of biology and photonics. It is a research and application area covering phenomena and processes, substances, objects in the size scale from nanometers to macro, such as viruses, molecules, organelles, cells, bacteria, membranes, tissues, small and larger organisms, in terms of their photonic properties. Biophotonics includes research and standardized clinical and general-purpose laboratory instrumentation. An active direction in the development of biophotonics is its quantum branch, where processes that usually occur at the nanoscale are studied. The interest in these nanoprocesses, either containing a photonic phenomenon or studied with photonic methods, stems from the fact that they often constitute the foundation of processes that occur and are later reflected in the macroscale of the entire biological object. The series of articles on biophotonics is an abbreviation of a lecture given by the author at the Faculty of Economics and Information Technology of the Warsaw University of Technology for PhD students. The next part of the series deals with the issues of super-resolution imaging, breaking the Abbe diffraction limit. The previous parts concerned research areas and correlations of biophotonics with related disciplines, biophotonic processes, photo-biosubstances, objects, spectroscopy, biophotonic laboratory techniques.
PL
Biofotonika jest dziedziną na pograniczu biologii i fotoniki. Jest obszarem badawczym i aplikacyjnym obejmującym zjawiska i procesy, substancje, obiekty w skali rozmiarowej od nanometrów do makro, jak wirusy, molekuły, organella, komórki, bakterie, membrany, tkanki, małe i większe organizmy, w aspekcie ich właściwości fotonicznych. Biofotonika obejmuje oprzyrządowanie laboratoryjne badawcze i standaryzowane kliniczne i ogólnego zastosowania. Aktywnym kierunkiem rozwoju biofotoniki jest jej gałąź kwantowa, gdzie badane są procesy zachodzące na ogół w nanoskali. Zainteresowanie tymi nanoprocesami, albo zawierającymi zjawisko fotoniczne, albo badane metodami fotonicznymi, bierze się z faktu że stanowią one często fundament procesów zachodzących i odzwierciedlanych potem w makroskali całego obiektu biologicznego. Cykl artykułów na temat biofotoniki jest skrótem wykładu prowadzonego przez autora na WEiTI Politechniki Warszawskiej dla doktorantów. Kolejna część cyklu dotyczy ogólnie bogatej problematyki obrazowania klasycznego i wysoko rozdzielczego. Poprzednie części dotyczyły obszarów badawczych i korelacji biofotoniki z pokrewnymi dyscyplinami, procesów biofotonicznych, foto-biosubstancji, obiektów, spektroskopii, biofotonicznych technik laboratoryjnych.
EN
Biophotonics is a field on the border of biology and photonics. It is a research and application area covering phenomena and processes, substances, objects in the size scale from nanometers to macro, such as viruses, molecules, organelles, cells, bacteria, membranes, tissues, small and larger organisms, in terms of their photonic properties. Biophotonics includes research and standardized clinical and general-purpose laboratory instrumentation. An active direction in the development of biophotonics is its quantum branch, where processes that usually occur at the nanoscale are studied. The interest in these nanoprocesses, either containing a photonic phenomenon or studied with photonic methods, stems from the fact that they often constitute the foundation of processes that occur and are later reflected in the macroscale of the entire biological object. The series of articles on biophotonics is an abbreviation of a lecture given by the author at the Faculty of Economics and Information Technology of the Warsaw University of Technology for PhD students. The next part of the series deals with the general issues of super-resolution imaging. The previous parts concerned research areas and correlations of biophotonics with related disciplines, biophotonic processes, photo-biosubstances, objects, spectroscopy, biophotonic laboratory techniques.
PL
Cykl artykułów na temat Biofotoniki porusza kolejno takie zagadnienia jak: - podstawowa terminologia biofotoniczna używana w publikacjach naukowych biomedycznych i technicznych, - zjawiska i procesy biofotoniczne, - materiały, substancje i obiekty biofotoniczne, - biofotoniczna aparatura pomiarowa, metody badawcze i procedury laboratoryjne, - zasady bioobrazowania i koherencyjna tomografia optyczna, - biofotoniczne technologie kwantowe, - techniki biospektroskopowe, - biomikroskopia fluorescencyjna, fotoakustyczna i nadrozdzielcza, - optogenetyka, - terapia fotodynamiczna i techniki teranostyczne, - energetyka biofotoniczna Głównym przedmiotem niniejszej części są wybrane techniki laboratoryjne oraz przegląd różnych funkcjonalnych i najbardziej efektywnych odmian specjalizowanych technik biospektroskopowych Każda z części cyklu zawiera na końcu rozdział przedstawiający kilka przykładów bieżących prac badawczych w obszarze biofotoniki lub nowych zastosowanych metod przedklinicznych i/lub klinicznych Cykl artykułów jest streszczeniem wykładu na temat biofotoniki kwantowej prowadzonego przez autora na WEiTI PW dla doktorantów Wykład dotyczy szczególnie nurtu kwantowego w biofotonice.
EN
The series of articles on Biophotonics addresses such issues as: - basic biophotonic terminology used in scientific, biomedical and technical publications, - biophotonic phenomena and processes, - biophotonic materials, substances and objects, - biophotonic measuring equipment, research methods and laboratory procedures, - principles of bioimaging and optical coherence tomography, - biophotonic quantum technologies, - biospectroscopic techniques, - fluorescence, photoacoustic and superresolution biomicroscopy, - optogenetics, - photodynamic therapy and theranostics, - biophotonic energetics The main subject of this part are selected laboratory techniques and an overview of various functional and effective varieties of specialized biospectroscopic techniques Each part of the cycle includes a chapter at the end presenting some examples of current research in the field of biophotonics or new applied pre-clinical and/or clinical methods The series of articles is a summary of the lecture on quantum biophotonics conducted by the author at the WEiTI PW for PhD students’ The lecture emphasises the quantum topical track in biophotonics.
PL
Biofotonika jest obszarem na skrzyżowaniu nauk o życiu i świetle. W porównaniu z innymi obszarami jest dyscypliną relatywnie nową. Obejmuje zastosowania światła jako źródło energii umożliwiające badania podstawowe i rozwój zastosowań w naukach biologicznych, farmaceutycznych, środowiskowych, rolniczych, oraz medycznych. Termin biofotonika i jej obecnie tak szerokie ujęcie tematyczne funkcjonuje relatywnie od niedawna, ale jednak już od kilkudziesięciu lat. Połączenie światła i wymienionych nauk funkcjonowało znacznie wcześniej. Można wymienić wiele znacznych kamieni milowych na drodze jej wczesnego i późniejszego rozwoju, poczynając od najprostszych technik mikroskopowych, fototerapie początkowo skupioną wiązką światła a potem wiązką laserową, i następnie odkrycie i rozwój białka zielonej fluorescencji, rozwój super-rozdzielczej mikroskopii fluorescencyjnej, szczypce optyczne i ich zastosowania w biologii, szerokopasmowe techniki spektroskopowe w pasmie UV-VIS-IR-MIR, pulsoksymetrię i inne optyczne techniki diagnostyczne, różne metody obrazowania a w tym optyczną tomografię koherencyjną. Biofotonika to rozwój technik diagnostycznych ale i terapeutycznych w dermatologii, okulistyce - leczenie retinopatii cukrzycowej, terapia fotodynamiczna i jej rozwój w obszarze fotoimmunoterapii. Techniki neuromodulacji i nanomanipulacji optycznej obejmują optogenetykę i niegenetyczne metody fotostymulacji. Biofotonika to zasilane i sterowane światłem nanomaszyny/nanoroboty molekularne. Biofotonika jest skorelowana z fotobiologią, fizyką i inżynierią biomedyczną, foto-elektro-biochemią, a także z kwantowymi technikami informacyjnymi, np. poprzez takie techniki jak ghost-imaging czy drug discovery. Biofotonika to złożony sprzęt laboratoryjny, biomedyczny i przemysłowy.
EN
Biophotonics is an area at the intersection of life and light sciences. Compared to other areas, it is a relatively new discipline. It covers the use of light as an energy source enabling basic research and development of applications in biological, pharmaceutical, environmental, agricultural and medical sciences. The term biophotonics and its currently broad thematic approach has been used relatively recently, but still for several decades. The combination of the light and the biology is much older. Many significant milestones in its early and recent developments can be listed, starting with the simplest microscopy techniques, focused beam phototherapy, and then the discovery and development of the green fluorescent protein, the development of super-resolution fluorescence microscopy, optical tweezers and their applications in biology, broadband spectroscopic techniques in the UV-VIS-IR-MIR spectrum, pulse oximetry and other optical diagnostic techniques, various imaging methods, including optical coherence tomography. Biophotonics is the development of diagnostic and therapeutic techniques in dermathology, ophthalmology - treatment of diabetic retinopathy, photodynamic therapy and its development in the field of photoimmunotherapy. Techniques of neuromodulation and optical nanomanipulation include optogenetics and non-genetic methods of photostimulation. Biophotonics includes nanomechanies/molecular nanorobots powered and controlled by light. Biophotonics is correlated with photobiology, biomedical physics and engineering, photo-electro-biochemistry as well as with quantum information techniques, e.g. through techniques such as ghost-imaging or drug discovery. Biophotonics to complex laboratory, biomedical but also industrial equipment.
PL
Wiele odkryć naukowych wprowadzonych do naszego życia miało swoją inspiracje w wyniku dogłębnej analizy zjawisk przyrodniczych prowadzonych przez naukowców na przestrzeni wieków. Już Archimedes swoje odkrycia opierał na prawach fizyki i matematyki, które również osobiście wcielał w życie. Sir Izaak Newton inspirował się przyrodą, tworząc swoje sławne prawo powszechnego ciążenia. Sir Alexannder Fleming, odkrywca penicyliny, był znakomitym obserwatorem zjawisk zachodzących na zanieczyszczonej grzybem szalce Petriego. Tych kilka przykładów wskazuje, iż wnikliwa obserwacja i wyciąganie wniosków stanowi motor postępu odkryć naukowych. W niniejszym opracowaniu przedstawiono odkrycie, które jest obecnie jedną z metod leczenia zakażeń mikrobiologicznych oraz nowotworów. Inspiracją tego odkrycia były… wampiry. I nie chodzi tu o jeden z gatunków nietoperzy.
EN
Many scientific discoveries introduced into our lives have had their inspirations as a result of an in-depth analysis of natural phenomena conducted by scientists over the centuries. Archimedes already based his discoveries on the laws of physics and mathematics, which he personally created in his implementation. Sir Isaac Newton inspired nature by creating his famous law of universal gravitation. Sir Alexannder Fleming, discoverer of penicillin, was an excellent observer of phenomena occurring on the fungus contaminated petri dish. These few examples indicate that careful observation and drawing conclusions is the driving force behind the progress of scientific discoveries. This study presents a discovery that is currently one of the methods of treatment of microbial infections and tumors. The inspiration for this discovery are… vampires. And this is not about one of the species of bats.
PL
Wiele odkryć naukowych wprowadzonych do naszego życia miało swoją inspiracje w wyniku dogłębnej analizy zjawisk przyrodniczych prowadzonych przez naukowców na przestrzeni wieków. Już Archimedes swoje odkrycia opierał na prawach fizyki i matematyki, które również osobiście wcielał w życie. Sir Izaak Newton inspirował się przyrodą, tworząc swoje sławne prawo powszechnego ciążenia. Sir Alexannder Fleming, odkrywca penicyliny, był znakomitym obserwatorem zjawisk zachodzących na zanieczyszczonej grzybem szalce Petriego. Tych kilka przykładów wskazuje, iż wnikliwa obserwacja i wyciąganie wniosków stanowi motor postępu odkryć naukowych. W niniejszym opracowaniu przedstawiono odkrycie, które jest obecnie jedną z metod leczenia zakażeń mikrobiologicznych oraz nowotworów. Inspiracją tego odkrycia były… wampiry. I nie chodzi tu o jeden z gatunków nietoperzy.
EN
Many scientific discoveries introduced into our lives have had their inspirations as a result of an in-depth analysis of natural phenomena conducted by scientists over the centuries. Archimedes already based his discoveries on the laws of physics and mathematics, which he personally created in his implementation. Sir Isaac Newton inspired nature by creating his famous law of universal gravitation. Sir Alexannder Fleming, discoverer of penicillin, was an excellent observer of phenomena occurring on the fungus contaminated petri dish. These few examples indicate that careful observation and drawing conclusions is the driving force behind the progress of scientific discoveries. This study presents a discovery that is currently one of the methods of treatment of microbial infections and tumors. The inspiration for this discovery are… vampires. And this is not about one of the species of bats.
PL
Wykorzystywanie światła wraz z substancją foto-uczulającą w terapii medycznej jest znane od dawna, a obecnie rozwijana jest również diagnostyka fotodynamiczna (PDD). Diagnostyka fotodynamiczna jest metodą nieinwazyjną stosowaną w diagnozowaniu wielu rodzajów nowotworów, takich jak: rak podstawnokomórkowy, rak kolczystokomórkowy, rak płuc, nowotwory złośliwe mózgu [1-2]. Podstawą w diagnozowaniu tkanek patologicznie zmienionych przy zastosowaniu PDD jest dobranie odpowiedniego fotouczulacza. Właściwości foto-uczulające, czyli cytotoksyczne zależą przede wszystkim od struktury chemicznej fotouczulacza, jego właściwości fizycznych i chemicznych, zdolności wnikania i akumulacji w tkance wykazującej zmiany patologiczne [1-6]. Praca niniejsza stanowi przegląd literaturowy dotyczący właściwości fizykochemicznych oraz oddziaływań biofizycznych fotosensybilizatorów z tkanką w procesie diagnostycznym. Najczęściej stosowanymi fotouczulaczami w diagnostyce medycznej są pochodne porfiryny (RYS. 1) [5]. Wyróżniamy trzy klasy fotouczulaczy: hydrofobowe, hydrofilowe i amfifilowe.[7]. W pracy niniejszej przedstawione będą właściwości i oddziaływania biofizyczne pochodnych szeregu chlorinu (chlorinu e6 [8], (RYS. 2)). Omówione będą oddziaływania i właściwości fotouczulaczy z grupy ftalocyjaniny (Pc), naftocyjaniny (Npc) oraz ich metaliczne pochodne Zn,Al,Ga,Si,Sn (RYS. 3) [9]. Szczególną uwagę zwrócono na właściwości kwasu 5-aminolewulinowy (ALA), który jest pięciowęglowym aminokwasem (RYS. 4) [5,10,11]. Podczas diagnostyki fotodynamicznej fotuczulacz naświetlany promieniowaniem laserowym o odpowiednio dobranej długości fali przechodząc na niższe poziomy energetyczne oddaje energię strukturom tkanek, co prowadzi do generowania wolnych rodników oraz wzbudzenia molekuł tlenu z paramagnetycznego stanu podstawowego do singletowego stanu diamagnetycznego. Wolne rodniki oraz tlen singletowy mogą powodować efekty toksyczne w tkankach. Efekty te zależą od ilości i rodzajów wytwarzanych wolnych rodników oraz od koncentracji tlenu singletowego, a więc od rodzaju stosowanego fotouczulacza i warunków procesów fotodynamicznych.
EN
Application of light and photosensitzers molecules in medicinal therapy and diagnosis (PDD) is known. Photodynamic diagnosis is used for a lot of tumors, for example: basal cell carcinoma, squamous cell carcinoma, pulmonary carcinoma, malignant neoplasm of the brain. The main problem of PDD is to chose of the optimal photosensitizer. Effective photodynamic processes depend on chemical structure, and chemical and physical properties of photosensitizers [1-10]. This work is the review of physicochemical properties and biophysical interactions of photosensitizers with tissues during photodynamic diagnosis. Derivatives of porphyrins (FIG. 1) [5], chlorine e6 (FIG. 2) [8], metalophthalocyanines compounds (FIG. 3) [9], and 5-aminolevulinic acid [11], were discussed. During photodynamic diagnostic processes the excited photosensitizer irradiated by laser causes excitation of oxygen molecules from paramagnetic ground state to diamagnetic singlet state. These effects are accompanied by formation of free radicals and reactive singlet oxygen, which damages cells structures. Free radicals and singlet oxygen may be responsible for toxic effects in tissues during PDD. These interactions depend on amount and types of free radicals and depend on concentration of singlet oxygen, so we can say that type of applied fotosensitizer and photodynamic conditions determine negative reactions during photodynamic diagnosis.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.