Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  bionanocomposite film
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The packaging industry responding to growing consumer demands for product safety, seeks active packaging that allows controlled antioxidant release through incorporating anthocyanin, curcumin, cinnamaldehyde, and other polyphenolic compounds to enhance functional properties of the film antimicrobial interfacial interaction. The research focuses on exploring the impact of adding curcumin and anthocyanin to sugar palm starch/chitosan bionanocomposite films, specifically examining the release kinetics of these bioactive compounds. The biocomposite film with added curcumin exhibits a smoother surface compared to the anthocyanin-based film. Although the thermal stability of the CH/SPS matrix remains unaffected by the addition of anthocyanin and curcumin, the inclusion of these compounds significantly reduces the melting enthalpy of the CH/SPS matrix. Specifically, the addition of curcumin decreases it from 142.96 J/g to 23.43 J/g, and the addition of anthocyanin reduces it to 33.22 J/g. Anthocyanin release from the CH/SPS matrix into water conforms to the Kosmeye-Peppas model (R2 = 0.9808, n = 0.1177), while the release kinetics of curcumin compounds adhere to the Higuchi model (R2 = 0.9968). These findings provide advantageous insights that potentially have implications for a variety of applications, particularly in areas such as sustainable food packaging.
EN
Researchers are actively exploring biodegradable biocomposite films as environmentally friendly packaging solutions. Increasing consumer demand for a healthy and secure lifestyle led to a serious recent study into the development of intelligent food packaging bio-nanocomposite films aiming not only contribute to sustainability but also possess advanced functionalities through the integration of nanotechnology and intelligent features. This research focuses on the development of active and pH-responsive bio-nanocomposite films by incorporating various concentrations of SPE anthocyanins into the nanoparticle of the CH-PSPS matrix using the solvent-casting method. Thorough examination and characterization of the films revealed a smooth and compact surface, indicative of a uniform distribution of SPE anthocyanins within the matrix as observed through AFM analysis. The inclusion of SPE anthocyanins resulted in a significant increase in antioxidant activity, ranging from 16.37% to 26.44%. Additionally, all films containing SPE anthocyanins exhibited excellent UV barrier properties and demonstrated sensitivity to pH levels within the range of 1 to 10 in buffer solutions. Moreover, the films effectively preserved the freshness of the shrimp during storage. Consequently, these developed films showcase promising potential as active and intelligent packaging materials for food products.
EN
Nanocellulose (NC) were extracted from the Moroccan Alfa plant (Stipa tenacissima L.) and characterised. These Alfa cellulosic nanoparticles were used as reinforcing phase to prepare bionanocomposite films using carboxymethyl cellulose as matrix. These films were obtained by the casting/evaporation method. The crystallinity of NC was analysed by X-ray diffraction, the dimension of NC by atomic force microscopy, molecular interactions due to incorporation of NC in carboxymethyl cellulose (CMC) matrix were supported by Fourier transforms infrared (FTIR) spectroscopy. The properties of the ensuing bionanocomposite films were investigated using tensile tests, water vapour permeability (WVP) study and thermogravimetric analysis. With the progress of purification treatment of cellulose, the crystallinity is improved compared to the untreated fibres; this can be explained by the disappearance of the amorphous areas in cellulose chain of the plant. Consequently, the tensile modulus and tensile strength of CMC film increased by 60 and 47%, respectively, in the bionanocomposite films with 10 wt% of NC, and decrease by 8.6% for WVP with the same content of NC. The NC obtained from the Moroccan Alfa fibres can be used as a reinforcing agent for the preparation of bionanocomposites, and they have a high potential for the development of completely biodegradable food packaging materials.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.