Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1356

Liczba wyników na stronie
first rewind previous Strona / 68 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  biomass
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 68 next fast forward last
EN
The efficient management of biomass fly ash is a key factor for the circular economy. Fly ash is produced in large quantities during biomass combustion and may be utilized for various applications, for both environmental and financial benefits. The main limitation of biomass fly ash utilization is its unrecognized potential caused by a lack of consistent law regulations. In this paper, possible paths of biomass fly ash management are discussed. The compositions of 4 fly ashes derived from biomass combustion in Polish units are presented, together with 2 examples of phosphorous-rich ashes. The five most promising ways of management are elaborated: concrete and cement production, phosphorous recovery and fertilizers, composites, ceramics, and sorbents. The latest state-of-the-art research regarding each path is briefly reviewed and current law regulations are introduced. Limitations for the safe management of biomass ash are also discussed.
PL
Zagospodarowanie popiołów lotnych z biomasy jest ważnym elementem gospodarki o obiegu zamkniętym (GOZ). Popiół lotny powstaje W znacznych ilościach podczas spalania biomasy, a jego odpowiednie zagospodarowanie może przynieść zarówno korzyści dla środowiska, jak i oszczędności finansowe. Głównym ograniczeniem wykorzystania popiołów lotnych z biomasy jest brak odpowiednich uregulowań prawnych, co powoduje również słabe rozpoznanie możliwości użycia popiołów. W artykule przedstawiono składy 4 popiołów lotnych pochodzących ze spalania biomasy W polskich obiektach energetyki zawodowej oraz 2 przykłady popiołów szczególnie bogatych w fosfor. Omówiono pięć najbardziej obiecujących sposobów wykorzystania: produkcja betonów i cementu, odzysk fosforu i zastosowanie jako nawozy, składnik kompozytów, materiały ceramiczne oraz sorbenty. Przedstawiono aktualne regulacje prawne oraz dokonano krótkiego przeglądu najnowszych badań dotyczących poszczególnych ścieżek. Omówiono także ograniczenia w zakresie bezpiecznego zagospodarowania popiołów z biomasy.
PL
Przeprowadzono pirolizę czterech surowców biomasy roślinnej: słomy pszenicznej, paździerzy lnianych, odpadów kukurydzianych i pestek wiśni, w atmosferze CO₂ i w trybie kaskadowego wzrostu temperatury, aż do osiągnięcia 500°C. Do oceny otrzymanych biowęgli zastosowano analizę termograwimetryczną i różnicową kalorymetrię skaningową (DSC). Wyznaczono ubytek masy oraz temperaturę i wielkość efektów cieplnych zachodzących podczas ogrzewania w warunkach utleniających. Wynikiem analiz była ocena efektów cieplnych zachodzących pod wpływem utleniania biowęgli, która potwierdziła możliwość stosowania techniki DSC do oceny ich właściwości energetycznych.
EN
Wheat straw, flax shives, corn waste or cherry pits were pyrolyzed in a CO₂ atmosphere in a cascading temp. increase mode until 500°C was reached. TG anal. and DSC were used to evaluate the obtained biochars. The mass loss, temp. and the magnitude of thermal effects occurring during heating under oxidizing conditions were detd.
EN
Anaerobic digestion is a demanding process, due to the large number of process and environmental factors that affect it. Many years of research of the various parameters have made it possible to optimise the process to obtain the maximum amount of biogas and methane contained in it, and this provides energy and environmental benefits. The article deals extensively with the operation of agricultural biogas plants, using the example of a plant that faces numerous operational problems. In order to identify the negative effects on energy yield and the equipment operating in the system, the substrate was examined, the data on its operation analysed, and solutions were proposed that should be taken into account in the further operation of the biogas plant. The analysis showed a good biogas yield from beet pulp of 563 dm3∙kg-1 of TS (total solid) and an average methane yield of 58%. With the analysis presented, it was possible to identify some operational problems. The biogas yield study also highlighted some errors made at the plant design stage. The most important of these is the use of an inappropriate organic matter loading factor for the digester, which leads to acidification of the contents and degradation of the methanogenic microorganism cultures.
EN
The paper presents an emergy analysis of the poultry farm regarding shifting energy sources from fossil fuels to biomass generated onsite in broilers and hen eggs rearing systems. It has been found that the manure produced on the farm has sufficient energy potential to replace the currently used energy carriers, both for heating and electricity supply. Replacing the currently used conventional energy resources with chicken manure will increase the emission charges. However, implementation of low-emission combustion techniques can help with reducing the emissions. Emergy analysis showed that for the conventional energy mix used in the farm, the Renewability Index (REN) is 0.5797, the Environmental Loading Ratio (ELR) is 171.49 and the Emergy Yield Ratio (EYR) has a value of about 1. If energy carriers are replaced by chicken manure, the REN may increase by 6.19% and the ELR may decrease by 6.11%. These relatively small changes should be considered in the context of the large scale of chicken production in Poland.
EN
The method of utilization of biomass ash in agriculture as an agrochemical is considered. Studies have shown that biomass ash contains a number of macro-and microelements essential for agriculture, such as phosphorus, potassium, calcium, magnesium and sulphur. Based on the content of the main chemical components and physical and chemical parameters of wood and plant ash, conclusions are drawn regarding its use. Wood ash with a high calcium content is suitable for agromelioration of soils with a low pH value. Ash from agricultural crop straw with a high calcium and potassium content is suitable for the production of potash fertilizers, and with a high potassium and phosphorus content–for the production of phosphorus-potassium fertilizers.
EN
Activated carbon (AC) is one of the best adsorbents for removing trace contaminants from air, soil and water due to its adsorption properties. It is produced from carbon-rich materials, mainly fossil raw materials. However, the price of hard coals has increased significantly in recent years due to the COVID-19 pandemic and the war in Ukraine. The existing eastern markets became blocked for carbon-raw-material sourcing. It is therefore important to find alternative materials or plant-based products. This study investigated the possibility of manufacturing activated carbon from waste biomass such as sugar beet fibers (SBSF), mixed vegetable processing waste (mainly corn) (MVW) and cherry stones (ChS). The raw material was subjected to pyrolysis, milling, granulation, carbonisation and activation at different times and temperatures. However, of the biomass materials tested, only SBSF in the form of marc can be processed into valuable activated carbon in further production steps. MVW and ChS as carbon substrates showed, in addition to high moisture and ash, low efficiency in decolourising molasses and methylene blue MB and also had a lower specific surface area.
EN
Biochar’s impact on plant growth is complex, varying with type and application rate. This study explored how four biochars (rice husk, cocoa shell, peanut shell, carob) affect rice (Oryza sativa L.) at five rates (0–5%). Biochar significantly enhanced rice growth, but the optimal type and rate varied. Total dry mass increased by an average of 20% in biochar-treated groups compared to controls, with rice husk and cocoa shell biochar at 5% application rate achieving the highest yields. The effects on plant components differed. While leaf mass fraction responded favorably to all biochar types, stem and root mass fractions remained largely unchanged. Additionally, root strength, as measured by root dry matter content, increased with all biochars, particularly rice husk biochar which boosted it by 8%. All biochar types also enhanced leaf mass per area, a key indicator of photosynthetic efficiency. These findings highlight the importance of tailoring biochar application strategies to specific crops and soil conditions. Optimizing biochar application based on its influence on root strength, leaf mass allocation, and growth across different crop species and soil conditions can unlock its full potential for sustainable development.
PL
Wkrótce spodziewane jest zwiększenie podaży biomasy stałej poprzez uprawę roślin energetycznych. Dane sugerują możliwość uprawy tych roślin na glebach średniej jakości. Bliższe środowisku metody pozyskiwania energii są obecnie jednym z głównych priorytetów naukowców.
EN
Pyrolysis is a method of producing oils from the raw materials of biomass by decomposing the thermochemical of organic materials at a given temperature. Free variables used in this research include pyrolysis temperaturę and biomass composition. The temperature variation of pyrolysis consists of three ranges: 100–200; 200–300; and 300–350 °C. Meanwhile, the composition of biomass consists of five combinations of waste rubber and coconut shells ranging from 0% coconut shell and 100% rubber wood to 80% coconut shell and 20% rubber shell. The physical characteristics of bio-oil analyzed include volume, pH, density, viscosity, and GC-MS analysis to determine its chemical characteristics. Research results showed that the pyrolysis temperature and composition of the biomass affected the characteristics of the bio-oil. The results of GC-MS analysis on bio-oil at 300–350 0C showed that bio-oil with a biomass composition of 80% coconut shells and 20% rubber wood yielded 50.19% phenol. The percentage of phenol is greater than that found in bio-oil with 20% coconut shells and 80% rubber wood, which is 18.78% phenol.
10
Content available remote Innovative method of biomass combustion in the binary fluidised bed
EN
In this study, a binary fluidised bed made out of quartz sand and cenospheres for the biomass combustion process was created. Materials were fluidised with air to achieve a vertical density profile (from 0.5 g/cm³ to 1.1 g/cm³) resulting from grains segregation. The density profile was selected to ensure optimal control over the location of the combusted fuel particle. This involved positioning the process as close to the bottom sieve as possible. Fluidised bed combustion was carried out at temperatures of 600 °C, 700 °C, 820 °C and 870 °C using straw, willow and sawmill pellets as fuels. Qualitative and quantitative analysis of flue gases was performed using an FTIR spectrometer. Over 90 % carbon conversion from the biomass to carbon dioxide was achieved at 700 °C. At 820 °C and 870 °C, 100 % of biomass carbon left the reactor as CO2. The composition of organic compounds in the process products remained low, reaching a maximum of 3.0 % wt. at 600 °C. To gain further insights into the processes occurring in the immediate vicinity of biomass samples, a complementary TGA/FTIR analysis was conducted. This aimed to clarify the impact of the biomass particle decomposition stage in the fluidised bed combustion process. The proposed mechanism for biomass combustion in the binary fluidised bed contains the particle decomposition stage and the subsequent stage resulting from the coalescence of bubbles containing flammable components and bubbles containing oxidiser.
EN
This study demonstrates that the process of mushroom production, from straw acquisition through substrate preparation to mushroom harvesting, and the utilisation of the remaining biomass as a valuable soil conditioner allows for minimising residue and reducing the use of mineral fertilisers It helps fill the gaps in the currently deficient manure in agricultural production, which has a significant positive impact on the natural environment as well as the economic aspect of production. Because of the biotransformation of organic matter in straw with the addition of nitrogen (from poultry litter) and calcium compounds (gypsum) in the mushroom cultivation process, a biomorphic mass with high fertiliser values is produced, as confirmed by research. The above fits into the framework of carbon farming, enabling maximum, fully ecological, and climate-friendly use of post-production agricultural biomass. The presented solution of "from the field to the mushroom farm and back to the field" seems decidedly more beneficial than straw fertilisation as it allows for a much broader assurance of continuity in the carbon cycle.
EN
This article presents the influence of ashes generated in the combustion processes of various types of biomasses on the durability (resistance to freezing and thawing after 25 cycles) of cement mortars. Three types of ashes were used for the tests: two fly ashes and one bottom ash. These differ in chemical composition and microstructure in the amounts of 10%, 20%, and 30% of the cement mass and are used as a substitute for standard sand. The ashes are characterized in terms of microstructure and chemical composition. The research shows that, regardless of the type of ash used, all the cement mortars containing ash are characterized by higher durability than the control mortars. Among the modified mortars, the smallest decrease in resistance (by 0.54%) to the process of freezing and thawing is shown by cement mortars containing 10% fly ash from the combustion process of biomass with the addition of sunflower, and the largest (by 7.56%) show mortars containing 30% bottom ash from the combustion of biomass with the addition of sunflower. These findings suggest that the incorporation of biomass ashes, particularly fly ash, into the cement matrix mixes has the potential to improve their durability for road infrastructure applications.
EN
Rapeseed by-products of seeds de-oiling, particularly expellers and post-extracted meal, are currently considered an important biomass that can be used as an alternative energy source, either in raw form or after conversion to biochar. Rapeseed biomass represents a difficult-to-handle cargo, mainly due to its sensitivity to mechanical, climatic, and biological impacts, as well as its dusty nature. This study aims to determine the physical properties of rapeseed meals and their fractions. Morphological and chemical features of six particle sets are investigated in order to explain the variation in their physical properties having importance in handling and transportation processes. The true density of fractions increases when the particle size decreases due to the diminishing quantitative share of seed coats. No correlation is observed between true and bulk densities, as the particle shape, surface sculpture, and adhesion affect the mutual particle arrangements. Along with a decrease in the particle size from 0.4 mm, a rapid decrease in the flowability is observed. The tendency of the finest dust (d < 0.075 mm) to form agglomerated complexes causes its lower bulk density, higher porosity, and higher angles of repose in comparison to coarse dust (0.075–0.4 mm). It is concluded that a relatively low tendency to free flowing of natural RSM is mainly caused by its wide-ranging particle size distribution and their geometry differentiation, which facilitate mutual particle interlockings. The known cases of blockages of silos, bins, hoppers, and transfer chutes may be mainly caused by the powder fractions (< 0.2 mm), with a much lower flowability than other particles.
14
Content available remote Uzdatnianie biogazu z wykorzystaniem technik membranowych
EN
The article presents the upgrading of biogas to biomethane using membranes. Currently, most of the biogas produced in Europe is burned in cogeneration units to produce electricity and heat. Upgrading raw biogas into biomethane seems to be future-proof and promising, especially considering the possibility of injecting enriched biogas into the transmission network or using it in the transport sector. A future solution is the enrichment of biogas into biomethane as an energy carrier. Waste-free purification of gas streams, recycling of raw materials and reducing energy consumption are possible, among others, thanks to the use of technologies using membrane modules. Factors that determine the profitability of a biogas enrichment installation are the selectivity of the membrane towards the separated gases, permeability, lifetime, temperature and humidity range, maintenance and replacement costs. An important problem is the lack of legal regulations in Poland regarding biomethane as a transport fuel. Currently, work is underway on legal regulations that will allow for the widespread use of treated biomethane in transport and the possibility of injecting it into gas networks.
PL
Niniejsza praca naukowa dotyczy wyników badań związanych z analizą zamienności paliw stałych dla kotłów grzewczych małej mocy. Opracowanie skupia się na wskaźnikach ekologicznych oraz ekonomicznych wybranych paliw stałych konwencjonalnych i odnawialnych. Wyniki badań dają wgląd w proces spalania konkretnych paliw biomasowych w oparciu o analizę techniczną, a także badania emisji substancji szkodliwych. Otrzymane rezultaty badań cieplnych oraz emisyjnych posłużyły do określenia średnich stężeń masowych emitowanych substancji szkodliwych oraz do oszacowania średnich parametrów cieplnych kotła, takich jak moc, sprawność i temperatura spalin. Zestawienie zebranych parametrów umożliwiło stworzenie szerszego obrazu procesu spalania biomasy, określenie konsekwencji środowiskowych używania badanych wsadów oraz oszacowanie wpływu zmiany obecnie eksploatowanych paliw kopalnych na biomasę. Przedstawiona analiza ekonomiczna pozwoliła także zauważyć potencjał ekonomiczny w przypadku słomy z pszenicy jako paliwa biomasowego.
EN
The present research work concerns the subject of the analysis of the interchangeability of solid fuels in low-power boilers. The study focuses on ecological and economic indicators of selected conventional and renewable solid fuels. The results provide insight into the combustion process of specific biomass fuels created on the basis of technical analysis and fuel interchangeability analysis as well as the research on the emission of harmful substances. The obtained results of thermal and emission tests were used to determine the average mass concentrations of emitted harmful substances and to estimate the average thermal parameters of the boiler, such as power, efficiency and flue gas temperature. The summary of the collected parameters enabled the creation of a broader picture of the biomass combustion process, allowed for the estimations of the environmental consequences of the use of the tested feedstocks and revealed the predicted impacts of changing the currently used fossil fuels on biomass. The presented economic analysis also revealed the profitable potential of wheat straw as a biomass fuel.
PL
Łupiny orzechów laskowych, produkt uboczny przemysłu spożywczego, mają znaczny potencjał jako prekursor do produkcji węgla aktywnego ze względu na ich dużą dostępność i dużą zawartość węgla. Przedstawiono badania możliwości przekształcenia łupin orzechów laskowych w węgiel aktywny, wykorzystany do oczyszczania ścieków z zanieczyszczeń organicznych. Porównano procesy aktywacji fizycznej i chemicznej otrzymanego węgla. Otrzymano wysoce porowaty materiał o powierzchni właściwej 1211 m²/g. Ponadto przedstawiono izotermy adsorpcji i oznaczono pojemność adsorpcyjną biowęgla względem rodaminy B.
EN
Hazelnut shells were pyrolyzed at 500°C for 1 h. The obtained biochar was activated phys. with CO₂ at 800°C or chem. with KOH at 850°C. A porous material with a sp. surface area of 1211 m²/g was obtained. The adsorption properties of activated C were tested in relation to the adsorption of rhodamine B. The adsorption capacity was 64.4 mg/g. The Langmuir, Freundlich, Sips and Toth adsorption equil. models were used to describe the rhodamine adsorption isotherm. The best fit to the exptl. data was observed for the Sips isotherm.
PL
Azot jest ważnym makroskładnikiem biomasy, ponieważ odgrywa istotną rolę w procesach metabolicznych, produkcji białek, syntezie aminokwasów, enzymów, hormonów oraz jest składnikiem chlorofilu. Ocena jego niedoborów w uprawach kukurydzy jest przedmiotem badań naukowych. W artykule zaprezentowano wyniki pomiarów w kontrolowanych warunkach laboratoryjnych wskaźników teledetekcyjnych kukurydzy uprawianej w wariantach nawożenia 0-150 kg·N/ha. Zaproponowana metoda oceny niedoboru azotu z wykorzystaniem sensora Crop Circle pozwala na autonomiczne sterowanie precyzyjnym nawożeniem doglebowym w projektowanym rozwiązaniu robota polowego.
EN
Nitrogen is an important macronutrient of biomass because it plays an important role in metabolic processes, protein production, amino acid synthesis, enzymes, hormones and is a component of chlorophyll. The assessment of its deficiencies in maize crops is the subject of scientific research. The article presents the results of measurements in controlled laboratory conditions of remote sensing indices of maize cultivated in fertilization variants of 0-150 kg·N/ha. The proposed method of assessing nitrogen deficiency using the Crop Circle sensor allows for autonomous control of precise soil fertilization in the designed solution of a field robot.
EN
This study examined the seasonal distributions of the medusa Rhizostoma pulmo along the coasts of the southern Black Sea between Kızılırmak and Yeşilırmak between April 2008 and March 2010. Monthly abundance and biomass values were determined, as well as population parameters.The effect of temperature on medusa distribution wasalso investigated. Results showed that medusa abundance and biomass were highest in autumn, following a period of increased temperature. In contrast, medusa was not observed during the spring season. It was possible to observe the R. pulmo individuals for five months for the first term of investigation period (2008-2009), and seven months for the second term (2009-2010). The highest abundance value was found to be 10 n/m 2 (November 2008 and September 2009) and the highest biomass value was 12.587,5 g/100 m3 (October 2009).
PL
W dobie transformacji energetycznej, kluczową kwestią staje się poszukiwanie alternatywy dla paliw kopalnych. Idealna alternatywa powinna być tania i powinna umożliwiać realizację celów klimatycznych, czyli najprościej rzecz ujmując - minimalnie oddziaływać na środowisko naturalne lub według najbardziej optymistycznego scenariusza - być neutralna klimatycznie.
20
Content available Reverse supply chain of residual wood biomass
EN
Background: Awareness of environmental or, more broadly, sustainable development is becoming an increasingly important issue, and questions of recycling and reuse have been getting more and more attention lately. Biomass is an important renewable resource and can take many forms, ranging from agricultural residues to food waste, forestry residues, and wood processing residues. A particular example is woody biomass such as forestry residues, wood-processing residues, or construction and municipal wastes that can be recycled and reused, providing a more environmentally friendly alternative to bioenergy production. This requires reverse supply chains in which the processes of collection, sorting, and transportation are efficient. The aim of this paper is to characterise the reverse supply chain of residual wood biomass and to indicate the main challenges related to it. Methods: For the needs of the paper, the research was conducted using the methods of analysis of secondary and primary sources. The materials included data obtained from scientific papers, reports, studies, and internet sources. We conducted focus groups interviews (FGIs) in three cities in Poland. Results: The article characterizes the details of the supply chain processes in woody biomass. Moreover, challenges, threats, and opportunities for reverse biomass supply chains are indicated. Conclusions: Wood biomass can be derived from various residues and has a very wide range of industrial applications. Several factors must be considered when organising and conducting logistics processes for wood residues, such as origin, structure, and composition of woody biomass. The reverse supply chain of residual biomass consists of many different entities between which many different processes take place. The well-organized logistical and technological processes are vital parts of the supply chain because they result in size reduction, moisture adjustment, cleaning, fractionation, densification etc., which reduces transport and storage costs. There are many challenges related to biomass supply chains, e.g. the seasonality of biomass, the different requirements for handling and transport equipment, as well as storage space configuration.
first rewind previous Strona / 68 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.