Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  biologiczne równanie ciepła
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study demonstrates computer simulation of human brain treated with interstitial microwave hyperthermia. A thin coaxial-slot antenna emitting microwaves is the heat source. For simplification, a 2D axisymmetric model is considered. The wave equation for TM wave case and the Pennes bioheat transfer equation for transient-state have been solved with the finite element method. The impact of the time variable on temperature distribution was discussed and the obtained simulation results were presented.
PL
Niniejsza praca pokazuje symulację komputerową mózgu człowieka leczonego przy wykorzystaniu śródmiąższowej hipertermii mikrofalowej. Źródłem ciepła jest cienka współosiowa antena ze szczeliną powietrzną emitująca mikrofale. Równanie falowe dla przypadku fali TM oraz biologiczne równanie przewodnictwa cieplnego określone przez Pennesa dla stanu niestacjonarnego zostały rozwiązane za pomocą metody elementów skończonych. Został przedyskutowany wpływ zmiennej czasowej na rozkład temperatury i przedstawione wyniki symulacji.
EN
This article relates to the application of the coaxial-slot antenna in pathological tissue treatment during interstitial microwave hyperthermia. Electromagnetic field radiated from the antenna in TM wave form is the source of the temperature gradient in the tissue. Therefore, besides the wave equation, the Pennes equation under transient condition is examined. The influence of the parameters of various tissues on temperature distribution is investigated. All simulation results have been calculated using the FEM for the antenna operating frequency of 2.45 GHz and the antenna input power level set to 1W.
PL
Artykuł odnosi się do zastosowania anteny współosiowej ze szczeliną powietrzną w leczeniu patologicznych tkanek podczas śródmiąższowej hipertermii mikrofalowej. Pole elektromagnetyczne wytwarzane przez antenę w postaci fali TM stanowi źródło gradientu temperatury w tkance. Z tego względu, oprócz równania falowego rozpatrzono równanie Pennesa w przypadku niestacjonarnym. Zbadano wpływ parametrów różnych tkanek na rozkład temperatury. Wyniki symulacji zostały wyznaczone przy użyciu MES dla częstotliwości pracy anteny 2,45 GHz oraz poziomu mocy wejściowej anteny 1 W.
PL
Śródmiąższowa hipertermia mikrofalowa jest inwazyjną metodą leczenia, w której grzanie elektromagnetyczne jest wytwarzane przez różnego rodzaju aplikatory mikrofalowe umieszczone wewnątrz chorych tkanek. Dobry przykład może stanowić współosiowa antena ze szczeliną powietrzną przedstawiona w niniejszej pracy. Opisany 2D model matematyczny stanowi połączenie elektromagnetycznego równania falowego dla przypadku fali TM oraz biologicznego równania ciepła w stanie ustalonym. Wykorzystując metodę elementów skończonych, wyznaczono rozkłady mocy mikrofalowej oraz współczynnika absorpcji właściwej wewnątrz tkanki ludzkiej. Wyniki symulacji zostały sporządzone dla różnych wartości mocy wejściowej anteny oraz różnych tkanek.
EN
Interstitial microwave hyperthermia is an invasive kind of treatment in which electromagnetic heating is produced by various types of the applicators located in the human pathological tissues. A good example may be a coaxial-slot antenna presented in this paper. The described 2D mathematical model consists of a coupling of the electromagnetic wave equation for TM wave case and the bioheat equation under steady-state condition. Using the finite element method, the microwave power deposition and the specific absorption rate (SAR) distributions in the human tissue are calculated. Moreover, the simulation results have been made for different values of the microwave antenna’s total input power and various tissues.
EN
The aim of this study was to evaluate and compare temperature distributions for different tissues being treated at the time of interstitial microwave hyperthermia. A coaxial-slot antenna implemented into the tissue is the source of microwave radiation. The described model takes into account the wave equation for the TM mode and the Pennes equation determining the temperature distribution within the tissue in the stationary case. The simulation results for the three fundamental microwave frequencies of tissue heating devices are presented.
PL
Celem pracy było wyznaczenie i porównanie rozkładu temperatury dla różnych tkanek poddawanych leczeniu w czasie śródmiąższowej hipertermii mikrofalowej. Źródłem promieniowania mikrofalowego jest współosiowa antena ze szczeliną powietrzną wprowadzona do wnętrza tkanki. Opisany model uwzględnia równanie falowe dla modu TM oraz równanie Pennesa dla przypadku stacjonarnego określające rozkład temperatury w tkance. Wyniki symulacji zestawiono dla trzech podstawowych częstotliwości pracy urządzeń do grzania mikrofalowego tkanek. (Rozkłady temperatury tkanek dla różnych częstotliwości pochodzące z śródmiąższowej hipertermii mikrofalowej)
PL
W niniejszej pracy przedstawiono model będący przykładem zastosowania hipertermii śródmiąższowej działającej miejscowo na chorą tkankę. Źródłem ciepła jest współosiowa antena mikrofalowa (ze szczeliną powietrzną) umieszczona w wątrobie. Ze względu na symetrię osiową modelu dla uproszczenia rozważono model dwuwymiarowy. Przedstawiony problem stanowi sprzężenie pola elektromagnetycznego i pola temperatury. Posługując się metodą elementów skończonych, rozwiązano równanie falowe dla przypadku fali TM, a następnie biologiczne równanie ciepła w przypadku stacjonarnym. Na końcu zestawiono uzyskane wyniki symulacji dla różnych wartości mocy wejściowej anteny.
EN
In this paper a model which is an example of interstitial microwave hyperthermia acting locally to diseased tissue is presented. A microwave coaxial-slot antenna placed in the liver tissue is a heat source. Due to the axial symmetry of the model, for simplification a two-dimensional case is considered. The presented issue is therefore a coupling of the electromagnetic field and the temperature field. Using the finite element method, the wave equation for TM wave case and the bioheat equation under steady-state condition have been solved. At the end the obtained simulation results for several levels of the antenna total input power are presented.
6
Content available remote Treatment of Tumors Located in the Human Thigh using RF Hyperthermia
EN
In this publication a numerical model and simulation results of electric field, induced current denslty and temperature distributions inside human thigh heated by external RF hyperthermia are presented. For simplicity, the heat transfer problem is treated in two-dimensions with semi infinite tissue model. The bioheat equation under a transient-time condition is solved to determine the temperature distributions inside the tumor and theat removal due to the blood circulation is also taken into account in the presented model.
PL
W artykule przedstawiono model numeryczny i wyniki symulacji pola elektrycznego, gęstości prądu indukowanego wewnątrz ludzkiego uda grzanego przy użyciu zewnętrznej RF hipertermii. Dla uproszczenia problem wymiany ciepła jest rozpatrywany w dwóch wymiarach dla pół-nieskończonego modelu tkanek. W celu określenia rozkładu temperatury wewnątrz guza i w otaczających go tkankach rozwiązano biologiczne równanie ciepła w przypadku zmiennym w czasie. W rozważanym modelu uwzględniono również odprowadzanie ciepła wynikające z krążenia krwi.
7
Content available remote Treatment of tumors located in the human thigh
EN
In this publication a numerical model and simulation results of electric field, induced current density and temperature distributions inside human thigh heated by external RF hyperthermia are presented. For simplicity, the heat transfer problem is treated in two-dimensions with semiinfinite tissue model. The bioheat equation under a transient-time condition is solved to determine the temperature distributions inside the tumor and surrounding tissues. The heat removal due to the blood circulation is also taken into account in the presented model.
PL
W niniejszym artykule przedstawiono model numeryczny i wyniki symulacji pola elektrycznego, gęstości prądu indukowanego i rozkładów temperatury wewnątrz ludzkiego uda grzanego przy użyciu zewnętrznej RF hipertermii. Dla uproszczenia problem wymiany ciepła jest rozpatrywany w dwóch wymiarach dla pół-nieskończonego modelu tkanek. W celu określenia rozkładu temperatury wewnątrz guza i w otaczających go tkankach rozwiązano biologiczne równanie ciepła w przypadku zmiennym w czasie. W rozważanym modelu uwzględ niono również odprowadzanie ciepła wynikające z krążenia krwi.
PL
Hipertermia jest jedną z metod leczenia nowotworów, w której patologiczne tkanki rakowe poddawane są działaniu wysokiej temperatury. Badania kliniczne wykazały, że grzanie tkanki nowotworowej do temperatury 40 - 44°C może prowadzić do uszkodzenia lub całkowitego zniszczenia komórek rakowych, jednocześnie minimalnie wpływając na zdrowe tkanki otaczające guza. W niniejszej pracy przedstawiono uproszczony model dwuwymiarowy stanowiący prosty przykład zastosowania lokalno-regionalnej hipertermii o częstotliwości radiowej, w której ciało człowieka otoczono przewodem kołowym z wymuszającym prądem, a energia elektromagnetyczna zostaje skupiona w środku guza. Analizowany model stanowi zatem sprzężenie pola elektromagnetycznego i pola temperatury. Posługując się metodą elementów skończonych na wstępie wyznaczono gęstość prądu indukowanego w ciele człowieka, a następnie rozwiązano biologiczne równanie ciepła w przypadku niestacjonarnym zależnym od czasu. Na końcu zestawiono uzyskane wyniki.
EN
Hyperthermia is one way to treat malignant tumors in which cancerous pathological tissues are exposed to high temperature. Clinical studies have shown that heating the tumor to temperatures 40 - 44°C can lead to damage or completely destruction of cancers cells simultaneously minimally affecting normal tissues surrounding the tumor. In this paper a simplified 2-D model which is an example of local-regional RF hyperthermia is presented. Human body is surrounded by a circular wire with exciting current and the electromagnetic energy is concentrated within the tumor. The analyzed model is therefore a coupling of the electromagnetic field and the temperature field. Using the finite element method exciting current density in human body has been calculated, and then bioheat equation in time-depended nonstationary case has been resolved. At the and obtained results are presented.
9
Content available remote Temperature inside tumor as time function in RF hyperthermia
EN
A simplified 2-D model which is an example of regional RF hyperthermia is presented. Human body is inside the wire with exciting current and the electromagnetic energy is concentrated within the tumor. The analyzed model is therefore a coupling of the electromagnetic field and the temperature field. Exciting current density in human body has been calculated using the finite element method, and then bioheat equation in timedepended nonstationary case has been resolved. At the and obtained results are presented.
PL
W niniejszej pracy przedstawiono uproszczony model dwuwymiarowy stanowiący prosty przykład zastosowania regionalnej hipertermii o częstotliwości radiowej, w której ciało człowieka znajduje się wewnątrz przewód z wymuszającym prądem, a energia elektromagnetyczna zostaje skupiona w środku guza. Analizowany model stanowi zatem sprzężenie pola elektromagnetycznego i pola temperatury. Posługując się metodą elementów skończonych na wstępie wyznaczono gęstość prądu indukowanego w ciele człowieka, a następnie rozwiązano biologiczne równanie ciepła w przypadku niestacjonarnym zależnym od czasu. Na końcu zestawiono uzyskane wyniki.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.