Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  biohydrogen
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Mając na względzie globalny trend poszukiwania paliw przyjaznych dla środowiska, w szczególności paliw niskoemisyjnych, zwrócono uwagę na technologię konwersji metanu do wodoru. W artykule przedstawiono sposób obliczania emisji GHG w cyklu życia biowodoru produkowanego poprzez pirolizę (bio)metanu. Technologia ta wydaje się przyszłościowa ze względu na fakt, że pozwala uzyskać zeroemisyjne paliwo. Podczas tego procesu otrzymuje się czysty wodór i stały węgiel. Węgiel może być wykorzystany przez wiele różnych gałęzi przemysłu, niekoniecznie jako paliwo. Zgodnie z dyrektywą 2018/2001 biopaliwo musi wykazać spełnienie założonego progu redukcji emisji GHG. Dlatego jest niezmiernie ważne, aby oceniać każdą nową technologię pod kątem emisyjności produktu. Obliczenia zostały przeprowadzone zgodnie z metodyką ustanowioną w dyrektywie 2018/2001, a w szczególności zgodnie z dokumentacją systemu KZR INiG. Do przeprowadzenia oceny przyjęto następujące założenia: model jednostki przetwórczej oraz dane wejściowe do tego etapu zaczerpnięto z danych literaturowych; przyjęto, że surowiec stanowi biometan produkowany z bioodpadów; obliczenia dla etapu pirolizy przeprowadzono jako obliczenia wartości rzeczywistych, natomiast dla pozostałych etapów cyklu życia biowodoru przyjęto wartości standardowe z dyrektywy 2018/2001. Badania wykazały, że wodór może osiągnąć poziom 69% redukcji emisji GHG w porównaniu z paliwem kopalnym (jako odpowiednik paliwa kopalnego wykorzystano wartość 94 gCO2eq/MJ). Jest to niewiele więcej niż wymagany próg 65%. Oznacza to, że podczas prac nad rozwojem tej technologii aspekty emisji GHG muszą być mocno brane pod uwagę.
EN
Bearing in mind the global trend of looking for environmental friendly fuels, in particular low carbon fuels, methaneto-hydrogen conversion technology was noticed. The process of calculation of life cycle GHG emissions from biohydrogen produced via (bio)methane pyrolysis was presented in the article. This technology seems to be future-proof in that it produces zero-carbon fuel. During this process, pure hydrogen and solid carbon are received. Carbon can be used in various branches of industry, not necessarily as fuel. According to the 2018/2001 Directive, biofuel has to achieve set GHG emission threshold. Thus it is extremely important to assess each new technology in terms of the emissivity of the product. The calculations were performed according to the methodology set out in the 2018/2001 Directive in particular according to the KZR INiG System documents. In order to carry out the assessment, the following assumptions were made: the model of the conversion unit and input data for this stage were obtained from literature data; the raw material was biomethane obtained from bio-waste; calculations for the pyrolysis stage were performed as actual values for the remaining stages of the life cycle of biohydrogen, the standard values from the 2018/2001 Directive were adopted. The research showed that hydrogen can reach 69% GHG emission saving in comparison to the fossil fuel (for the fossil fuel comparator the 94 gCO2eq/MJ values was used). This value is slightly higher the required threshold of 65%. It means that GHG emission aspects need to be carefully taken into account when developing this technology.
PL
W artykule przedstawiono sposób obliczania ilości biowodoru lokowanego do komponentów paliw silnikowych i opałowych wytwarzanych w instalacjach rafineryjnych. Określenie „zalokowany biowodór” należy rozumieć jako ilość biowodoru, która została przypisana do każdego strumienia produktowego w danej instalacji. Zalokowany w komponentach paliwowych biowodór mógłby następnie zostać wykorzystany jako jedno z narzędzi do realizacji Narodowego Celu Wskaźnikowego (NCW), określającego obowiązek wprowadzania na rynek paliw transportowych ze źródeł odnawialnych. Proces przyłączania wodoru (biowodoru) w warunkach rafineryjnych zachodzi w wyniku reakcji katalitycznego hydroodsiarczania i hydroodazotowania, uwodornienia wiązań nienasyconych oraz uwodornienia węglowodorów aromatycznych. Ilość zalokowanego biowodoru, który w przypadku danej instalacji może zostać zaliczony do realizacji NCW, zależy przede wszystkim od głębokości procesu hydrokonwersji – im wyższa konwersja, czyli im więcej powstaje produktów lżejszych od surowca, tym ilość wodoru zalokowanego w produktach jest większa. Znaczenie ma również zawartość siarki i azotu w surowcu – im większa, tym więcej wodoru musi zastąpić heteroatomy w cząsteczkach węglowodorów. Ważne są także kierunki zagospodarowania produktów z instalacji. Do realizacji NCW można zaliczyć jedynie biowodór zalokowany do komponentów paliw silnikowych, natomiast biowodór zalokowany do produktów niepaliwowych, np. baz olejowych, komponentów dla petrochemii, nie może być zaliczony do tego celu. Określenie ilości zalokowanego biowodoru wymaga analizy danych i schematu technologicznego rafinerii, w tym ścieżek wytwarzania komponentów paliwowych służących do produkcji LPG, benzyn silnikowych, paliwa do turbinowych silników lotniczych (Jet), oleju napędowego oraz oleju opałowego, analizy obiegu strumieni wodorowych na terenie rafinerii oraz danych bilansowych poszczególnych instalacji dotyczących surowców i uzyskiwanych w tych instalacjach produktów. Zaproponowany sposób lokowania biowodoru do komponentów paliwowych w warunkach rafineryjnych jest praktycznie bezinwestycyjny, niewymagający budowy instalacji przemysłowych, i można go dostosować do każdego schematu przeróbki ropy naftowej w danej rafinerii.
EN
The article presents the method of calculating the amount of bio-hydrogen allocated to the components of motor and heating fuels produced in refining installations. The term “allocated biohydrogen” shall be understood as the amount of biohydrogen that has been allocated to each product stream in a given installation. Bio-hydrogen allocated to the fuel components could then be used as one of the tools for the implementation of the National Renewable Target, which specifies the obligation to introduce transport fuels from renewable sources to the market. The process of adding hydrogen (bio-hydrogen) under refinery conditions takes place as a result of catalytic hydrodesulfurization and hydrodenitrogenation, hydrogenation of unsaturated bonds and hydrogenation of aromatic hydrocarbons. The amount of allocated biohydrogen, which in a given installation may be used for the implementation of National Renewable Target, depends primarily on the depth of the hydroconversion process. As a result of higher conversion, more fractions lighter than the raw material are produced, thus the amount of allocated hydrogen in the products is greater. The content of sulfur and nitrogen in the raw material is also important – with higher content, more hydrogen must replace the heteroatoms in the hydrocarbon molecules. The directions of use of the products from the installation also affect the result. The implementation of the National Renewable Target includes only biohydrogen allocated to engine fuel components, while biohydrogen allocated to non-fuel products, e.g. oil bases, petrochemical components is excluded. Calculation of the quantity of allocated bio-hydrogen requires analysis of the data and the technological scheme of the refinery, including the production paths of fuel components: LPG, motor gasoline, Jet fuel, diesel oil and heating oil, circulation of hydrogen streams in the refinery and balance data of individual installations regarding raw materials and products obtained from them. The proposed method of calculating bio-hydrogen allocated to fuel components under refinery conditions is practically investment-free, does not require the construction of industrial installations and can be adapted to any crude oil processing scheme in a given refinery.
PL
Biowodór powstaje w wyniku aktywności metabolicznej mikroorganizmów w warunkach beztlenowych. W artykule omówiono szlaki metaboliczne produkcji biowodoru: biofotolizę, fotofermentację i ciemne fermentacje. Szczególny nacisk położono na procesy produkcji biowodoru na etapie kwasogenezy beztlenowego rozkładu biomasy (ciemna fermentacja i konwersja mleczanu i octanu do maślanu) jako obiecującą metodę produkcji biowodoru. Produkcja biowodoru taką metodą charakteryzuje się niską wydajnością i wymaga ograniczenia procesów konkurencyjnych, głównie innych typów fermentacji kwaśnych. Produkcja biowodoru na etapie kwasogenezy jest możliwa w instalacjach dwu - lub wieloetapowych, w których etap kwasogenezy jest oddzielony czasowo i przestrzennie od etapów acetogenezy i metanogenezy. Przedstawiono prace nad tego typu technologią na przykładzie dwuetapowej instalacji produkcji biowodoru i biometanu na drodze beztlenowego rozkładu produktów ubocznych przemysłu cukrowniczego opracowanej w jednostce naukowej i rozwijanej przez partnera przemysłowego. Omówiono wyzwania i ograniczenia produkcji biowodoru, zwłaszcza na etapie kwasogenezy. Zdefiniowano powody niedojrzałości technologii produkcji biowodoru i pozostawanie ich ciągle na etapie badawczo-rozwojowym w porównaniu do zaawansowanych, wdrażanych rozwiązań produkcji biogazu.
EN
Biohydrogen is produced by the metabolic activity of microorganisms under anaerobic conditions. The article discusses the metabolic pathways of biohydrogen production: biophotolysis, photo-fermentation, and dark fermentations. Special emphasis was put on biohydrogen production processes at the acidogenesis stage of anaerobic digestion (dark fermentation and conversion of lactate and acetate to butyrate) as a promising method of biohydrogen production. The production of biohydrogen by such a method has low yields and requires the reduction of competing processes, mainly other types of acid fermentation. Production of biohydrogen at the acidogenesis stage is possible in two-stage or multi-stage systems, in which the acidogenesis stage is separated in time and space from the acetogenesis and methanogenesis stages. The work on such a technology is presented using the example of a two-stage installation for the production of biohydrogen and biomethane by anaerobic digestion of sugar industry by-products developed at a research unit and being developed by an industrial partner. Challenges and limitations of biohydrogen production were discussed, especially at the acidogenesis stage. Reasons for the immaturity of biohydrogen production technologies and their still remaining in the research and development stage compared to advanced, implemented biogas production solutions were discussed.
4
Content available Hydrogen production analysis: prospects for Ukraine
EN
Over the last few years, hydrogen energy has shifted from a little-studied field to the main one with which leading western countries associate the prospects of their national economies. The reasons are the unprecedented pace of development of hydrogen technologies. It turned out that they are able to provide significant reductions in greenhouse gas emissions, and thus bring closer the solution to the problem of global climate change. The first and foremost purpose of our investigation is to reveal that our country has ample opportunities to become the main supplier of hydrogen to the EU market, overtaking North Africa in the competition. Using the methods, authors studied the targets of the European funds towards development of energy production from biohydrogen, studied the potential for the implementation of hydrogen projects, possibilities of financing them and a potential ability of Ukraine to form internal and external markets for hydrogen energy. One of the main issues of Ukraine's possible participation in Europe's hydrogen energy program as a supplier and producer of renewable hydrogen is the possibility of its technically safe and cost-effective transportation to EU countries. As a conclusion to the authors’ research, the path of the hydrogen industry development in Ukraine will help to receive additional investments in the Ukrainian economy for creation of new capacities for "green" hydrogen production. In return, Europe will receive research and evolution of the bioenergy component of the economy, which will permit the safe transition of Europeans to an affordable, competitive, and stable energy system.
PL
W ostatnich latach energia pochodząca z wodoru z mało zbadanego obszaru stała się głównym tematem, w którym kraje zachodnie upatrują szansy dla swoich krajowych gospodarek. Wynika to z niesłychanego tempa rozwoju technologii wodorowych. Okazało się, że są one w stanie znacząco zredukować emisję gazów cieplarnianych i w ten sposób przybliżyć rozwiązanie problemu globalnej zmiany klimatu. Pierwszym i najważniejszym celem naszego badania jest wykazanie, że nasz kraj posiada duże możliwości, aby stać się głównym dostawcą wodoru na rynek europejski, wyprzedając w tym północną Afrykę. Przy zastosowaniu metod, autorzy dokonali przeglądu celów europejskich funduszy w kierunku rozwoju produkcji energii z biowodoru, możliwość wprowadzenia projektów wodorowych, możliwości finansowania potencjału Ukrainy do tworzenia wewnętrznych i zewnętrznych rynków energii wodorowej. Jednym z głównych kwestii możliwego udziału Ukrainy w europejskim programie energii wodorowej jako dostawcy i producenta odnawialnego wodoru jest możliwość jego bezpiecznego i opłacalnego transportu do krajów UE. Podsumowując, autorzy stwierdzili, że ścieżka rozwoju przemysłu wodorowego na Ukrainie pozwoli na uzyskanie dodatkowych inwestycji w gospodarce Ukrainy w celu stworzenia nowych możliwości produkcji zielonego wodoru. W zamian Europa otrzyma badania i rozwój nad wodorem, który jest elementem gospodarki. Co z kolei pozwoli na bezpieczne przejście Europejczyków na niedrogi, konkurencyjny i stały system energii.
PL
Jednym z paliw, jakie w przyszłości planuje się wykorzystywać w dużo większym stopniu niż obecnie jest wodór. Wiele wdrażanych technologii ma pozwolić na to, aby bez większych przeszkód stosować ten rodzaj paliwa do pojazdów silnikowych. Jednak już od dawna wodór jest niezbędnym surowcem w wielu instalacjach do produkcji paliw tradycyjnych i używany przede wszystkim do tzw. wodorowych procesów katalitycznych (m.in. hydrokrakingu i hydrorafinacji). Tradycyjna technologia produkcji wodoru polegająca na reformingu parowym gazu ziemnego generuje wysoką emisję GHG w cyklu życia. Przyczyną tego jest wykorzystanie surowca kopalnego, z którego na etapie produkcji powstaje CO2 (traktowany jako emisja z paliwa kopalnego i wliczany do bilansu emisji GHG). Drugim powodem jest wysoka energochłonność procesu, która przekłada się na dodatkową emisję gazów cieplarnianych generowaną w cyklu życia. Mając na uwadze ten aspekt, celowym jest wykorzystanie alternatywnych sposobów otrzymywania wodoru oraz znanych procesów, ale z wykorzystaniem biomasy odpadowej jako wyjściowego surowca. Procesy takie prowadzą do uzyskania wodoru, który ze względu na pochodzenie surowca z jakiego powstał, traktowany jest jako biopaliwo. Obecne rozwiązania prawne dają możliwość zakwalifikowania biowodoru używanego w wyżej wymienionych procesach rafineryjnych jako biogenny składnik tradycyjnego paliwa. Jednak aby uzyskał on status biopaliwa zaliczonego na poczet realizacji NCW, musi on spełniać wymogi dyrektywy 2009/28/WE (tzw. RED) i ILUC. Kluczowym jest więc udowodnienie, że surowce z których dane biopaliwo wyprodukowano spełniają tzw. kryteria zrównoważonego rozwoju. W artykule opisano metody produkcji wodoru ze szczególnym uwzględnieniem biomasy jako surowca do jego produkcji. W przypadku jej wykorzystania, otrzymany w wyniku jej przeróbki wodór posiada biogenny charakter, a zatem może być potraktowany jako biopaliwo. Jednak zgodnie z obecnymi przepisami, każde biopaliwo, aby zostało zaliczone na poczet realizacji Narodowego Celu Wskaźnikowego (NCW), musi wykazać spełnienie tzw. kryteriów zrównoważonego rozwoju. Jednym z nich jest minimalny poziom ograniczenia emisji gazów cieplarnianych liczony w cyklu życia. Dlatego w artykule przeanalizowano trzy ścieżki produkcyjne, tj. produkcję biowodoru z biogazu, resztek drzewnych oraz surowej gliceryny. Spośród tych trzech najkorzystniejszym wariantem okazał się reforming biogazu, który wykazał ograniczenie emisji GHG na poziomie około 77%. Dodatkowo, tylko ta ścieżka produkcji spełniła wymagania stawiane biopaliwom otrzymywanym w nowych instalacjach.
EN
One of the fuels which will be used in the future to a much greater extent than currently is hydrogen. Many of the implemented technologies will allow this kind of fuel to drive motor vehicles without major obstacles. However, hydrogen has long been an indispensable raw material for many installations for the production of traditional fuels and used primarily for the so-called hydrogen catalytic processes (including hydrocracking, hydrotreating). Traditional hydrogen production based on natural gas steam reforming, generates high GHG emissions over the life cycle. The reason for this is the use of fossil raw material, from which CO2 is generated at the production stage (treated as emission from fossil fuel and included in the GHG emission balance). The second reason is the high energy consumption of the process, which translates into additional greenhouse gas emissions generated in the life cycle. Given this aspect, it is advisable to use alternative methods of obtaining hydrogen and known processes, but using waste biomass as the starting raw material. Such processes lead to obtaining hydrogen, which due to the origin of the raw material from which it was created, is treated as a biofuel. Current legislation allows the possibility to qualify the biohydrogen used in the abovementioned refinery processes as a biogenic component of traditional fuel. However, according to the current regulations, each biofuel must meet the sustainability criteria. One of them is the minimum level of greenhouse gas emission reduction calculated in the whole life cycle. Therefore, as part of this work, three production paths have been analyzed. The following pathways were analyzed: biohydrogen from biogas, biohydrogen from wood residues and biohydrogen from raw glycerine. Of the three, the most advantageous variant turned out to be biogas reforming, which showed a GHG emission reduction of around 77%. In addition, only this production path met the requirements for biofuels obtained on new installations.
EN
The increasing demand for electrical energy and environmental concerns associated with conventional means of its generation drive the interest in alternative fuels. Biohydrogen, widely considered as fuel of the future, is one of such alternatives. To date, research results suggest that biological routes are the most promising for hydrogen production, especially dark (hydrogen) fermentation. Hydrogen fermentation can be performed with agricultural and food processing wastes as substrates. In this paper the most important factors influencing dark fermentation are reviewed and analyzed. These are: pH, partial pressure, temperature, and retention time. The biohydrogen generation efficiency is also presented with respect to different substrates. It should be also pointed out that many factors are still unknown; thus, the process requires conducting further research.
EN
Anaerobic digestion of organic matter results from the metabolic activity of many groups of microorganisms. Interactions between microorganisms during acidogenesis, acetogenesis and methanogenesis, source of inoculum, type of feedstock and operational conditions determine metabolic pathways in bioreactors and consequently the efficiency of fermentation processes. In innovative installations it is desirable to separate acidogenesis from acetogenesis and methanogenesis to favour respectively the production of biohydrogen or biomethane under controlled conditions.
PL
Bio-wodór może być otrzymywany m.in. w wyniku przetwarzania biomasy ligno-celulozowej (BMLC) w procesach fermentacji ciemnej, realizowanej w atmosferze beztlenowej, lub o niskiej zawartości tlenu, najczęściej w atmosferze azotu. Ważne znaczenie w badaniach optymalizacji warunków ciemnej fermentacji ma analityka składu powstających w procesie mieszanin gazów, które - poza wodorem, zawierają głównie: CO2, CH4 oraz niewielkie stężenia O2. Wyniki wcześniejszych naszych badań pokazują, że z wykorzystaniem długiej (6.5 m) kolumny pakowanej adsorbentem Porapak Q o ziarnach wypełnienia 100 – 120 MESH, przy zastosowaniu azotu jako gazu nośnego, możliwe jest rozdzielenie w warunkach izotermicznych oraz oznaczenie w/w składników mieszanin gazowych z wykorzystaniem detektora cieplno-przewodnościowego (TCD), przy czasie analizy ok. 10 minut. W niniejszej pracy przedstawiono układ aparatu, porównawcze wyniki rozdzielania oraz korzystną metodykę analityczną oznaczania w/w składników gazowych z zastosowaniem dwóch równolegle usytuowanych i stosowanych naprzemiennie kolumn pakowanych, jednej z polimerowym adsorbentem typu Porapak Q oraz drugiej z sitem molekularnym 5 A. Porównano zastosowanie azotu albo helu jako gazu nośnego. Zastosowano dwa szeregowo połączone detektory – detektor cieplno-przewodnościowy o średniej czułości oraz detektor płomieniowo-jonizacyjny (FID), charakteryzujący się niskim progiem wykrywalności i możliwością oznaczania śladowych zawartości lotnych węglowodorów i innych lotnych organicznych składników obecnych w gazie fermentacyjnym, także innego typu niż pochodzącym z fermentacji ciemnej. Studia i badania tej pracy doprowadziły do wniosków, dotyczących korzystnych zasad postępowania w zakresie analityki mieszanin gazowych z fermentacji ciemnej i innego rodzaju fermentacji, zarówno w zakresie w/w głównych składników mieszanin gazowych obecnych w gazach fermentacyjnych, jak i w zakresie badania śladowych zawartości w gazach fermentacyjnych takich składników, jak CO, COS, NH3, PH3, SO2 oraz różnych lotnych związków organicznych, obecnych nad płynną powierzchnią w bioreaktorze fermentacji.
EN
Bio-hydrogen can be obtained e.g. as a result of processing of ligno-cellulosic biomass (BMLC) in so-called dark fermentation, carried out in an anaerobic atmosphere or with low oxygen content, most often in a nitrogen atmosphere. The analytical composition of the gas mixtures formed in the process, H2, CO2, CH4 and low concentrations of O2 is extremely important in the perspective of the dark fermentation optimization. Our previous research results show that using a column packed with Porapak Q adsorbent with packing grains of 100 - 120 MESH and using nitrogen as the carrier gas, it is possible to fully separate under isothermal conditions and determine the components of the gas mixtures tested using a thermal conductivity detector (TCD) with an analysis time of about 10 minutes. This work presents the apparatus layout, comparative separation results and a favorable analytical methodology for determining the aforementioned gaseous components using two packed columns arranged in parallel and used alternately, one with a Porapak Q type polymer adsorbent and the other with granular zeolite, the so-called 5 A molecular sieve. The use of nitrogen or helium as a carrier gas was compared. Two detectors connected in series were used - a universal thermal conductivity detector of medium sensitivity and a flame ionization detector (FID), enabling highly sensitive detection and trace determination content of volatile hydrocarbons and other volatile organic components present in the fermentation gas, also other than those originated during the dark fermentation. The presented studies and research of this work have led to conclusions regarding favorable rules of conducting the analysis of gas mixtures from dark fermentation and other types of fermentation, both in terms of the above-mentioned main components of gas mixtures present in fermentation gases, as well as in the field of testing trace content in fermentation gases with emphasis on CO, COS, NH3, PH3, SO2 and various volatile organic compounds found above the liquid surface in the fermentation bioreactor.
PL
Fermentacja ciemna umożliwia otrzymywanie bio-wodoru z substratów pochodzenia biologicznego, np. z biomasy ligno-celulozowej. Kontrola i właściwe sterowanie przebiegiem procesu fermentacji ciemnej wymaga bieżącego monitoringu składu powstającej fazy gazowej. W niniejszej pracy przedstawiono metodykę analizy składu fazy gazowej z wykorzystaniem techniki GC-TCD-FID. Zaproponowana metodyka umożliwia oznaczenie następujących gazów w analizowanej mieszaninie: H2, O2, CH4 i CO2. W pracy zwięźle omówiono metodę fermentacyjnego otrzymywania biopaliw gazowych z surowców ligno-celulozowych. Przedstawiono przykładowe wyniki analizy chromatograficznej próbek gazowych, pobieranych w trakcie fermentacji ciemnej z hydrolizatu ze zmielonej i wysuszonej wierzby energetycznej po wcześniejszej obróbce alkalicznej i hydrolizie enzymatycznej.
EN
Dark fermentation allows the production of biohydrogen from substrates of biological origin, e.g. from lignocellulosic biomass. The proper control of the course of the dark fermentation process requires the need of monitoring of the composition of the generated gas phase. This paper presents the methodology of gas phase composition analysis using the GC-TCD-FID technique. The proposed methodology makes it possible to determine the following gases in the analyzed mixture: H2, O2, CH4 and CO2. The work discusses briefly the method of fermentative production of gaseous biofuels from lignocellulosic raw materials. Exemplary results of the GC-FID-TCD analysis carried out on gas samples collected during dark fermentation from milled and dried energetic willow, previously alkaline pretreated and enzymatically hydrolysed, are presented.
10
Content available Hydrogen and methane production from whey
EN
Decreasing amount of fossil fuels in the world encourages the searching of alternative energy sources. In this time of energetic crisis, the production of hydrogen is an interesting solution. Hydrogen does not produce any contaminating emission. The aim of this study was to build a project installation that produces gas biofuels and define the potential biohydrogen and biogas possible to produce from the waste of a dairy plant. The calculations assume a production of 400 m3 per day of whey permeate from the dairy plant. The methane fermentation process was carried out according to the modified German standard DIN 38 414/S8 in the eco-technology laboratory in the Poznan University of Life Sciences. The results revealed that, with the assumed quantity of available substrate, it is possible to generate 1 570 960 m3 of hydrogen per year and 4 749 469 m3 of biogas with a methane percentage of approx. 49%. Based on these results it could be possible to build a biogas plant of an estimated power of 0,99 MW of electricity and 1,12 MW of heat, as well as the hydrogen fuel cell power of 0,32 MW of electricity.
PL
Kończące się zasoby paliw kopalnych skutkują sytuacją, w której świat staje w obliczu konieczności poszukiwania nowych, alternatywnych źródeł energii. W czasach kryzysu energetycznego interesującym rozwiązaniem wydaje się być produkcja i wykorzystanie wodoru, który zarówno w wyniku spalenia, jak i wykorzystania w ogniwie paliwowym nie emituje zanieczyszczeń środowiska. Celem pracy było określenie możliwych do wyprodukowania ilości biowodoru oraz biogazu z mleczarskiego odpadu poprodukcyjnego. W obliczeniach uwzględniono umiejscowienie instalacji przy zakładzie mleczarskim produkującym dziennie 400 m3 permeatu serwatkowego. Wykorzystano ponadto wyniki badań przeprowadzonych w Pracowni Ekotechnologii w Poznaniu uzyskane na podstawie analiz wykonanych zgodnie z obowiązującą niemiecką normą DIN 38 414/S8. Na potrzeby obliczeń posłużono się także danymi zamieszczonymi w najnowszej literaturze przedmiotu. Na postawie uzyskanych wyników wykazano, że z zakładanej ilości dostępnego substratu możliwe będzie wytworzenie rocznie 1 570 960 m3 wodoru oraz 4 749 469 m3 biogazu o procentowej zawartości metanu ok. 49%. W oparciu o te dane obliczono realną moc biogazowni na poziomie 0,99 MW energii elektrycznej oraz 1,12 MW ciepła, a także moc ogniwa paliwowego wynoszącą 0,32 MW energii elektrycznej.
11
PL
Aktualnie zauważalny jest dynamiczny wzrost wykorzystywania wodoru na świecie wynoszący około 12% rocznie. Przewiduje się, że do 2025 roku wzrośnie on o około 8-10%. Wykorzystywane obecnie metody produkcji wodoru są bardzo energochłonne. W artykule przedstawiono aktualny stan wiedzy w zakresie efektywności, wyzwań i perspektyw produkcji wodoru z odpadów w warunkach ciemnej fermentacji.
EN
Currently, there is a noticeable dynamic increase in the use of hydrogen in the world amounting around 12% per year. It is expected that by 2025 it will increase by about 8-10%. Currently used methods of hydrogen production are very energy intensive. The article presents the current state of knowledge regarding the effectiveness, challenges and perspectives of hydrogen production from waste in conditions of dark fermentation.
EN
Increased environmental problems as well as growing fuel and energy demand encourage the international community to effectively search for new energy technologies that would ensure an acceptable level of pollution and, simultaneously, would not limit economical growth. The key position in solving this problem is occupied by hydrogen energy, ie hydrogen production and use of fuel cells in industry, construction, transportation, housing and other sectors of the economy. So it is possible to say that hydrogen becomes a promising alternative energy carrier to fossil fuels, since it is clean, renewable, contains high energy content and does not contribute to greenhouse effect. Biological hydrogen production is one of the most challenging areas of technology development for sustainable generation of gaseous energy. The present study critically updates various biohydrogenation processes with special references to their advantages and disadvantages. Different approaches towards improvement of the bioprocesses are also outlined. The presented study reviews biohydrogen systems, molecular and genetic aspects of hydrogen production and technologies of biohydrogen production.
PL
Narastające problemy środowiskowe, a także wzrastające zapotrzebowanie na energię oraz jej nośniki w postaci paliw zmuszają do wzmożonych badań nad nowymi technologiami energetycznymi. Technologie takie z jednej strony powinny zapewnić akceptowalny poziom emisji zanieczyszczeń, z drugiej zaś nie ograniczać jednocześnie wzrostu ekonomicznego. Jednym z kluczowych sposobów rozwiązania problemów energetycznych wydaje się wykorzystanie wodoru jako nośnika energii. W powiązaniu z tym zagadnieniem rozważane są kwestie odnoszące się do produkcji wodoru oraz wykorzystania zawierających go ogniw paliwowych w przemyśle, budownictwie, transporcie, gospodarstwach domowych oraz wielu innych sektorach gospodarki. Wodór staje się obiecującym alternatywnym nośnikiem energii, zdolnym w przyszłości zastąpić paliwa kopalne z uwagi na swój wysoki potencjał energetyczny, odnawialność oraz „czystość” generowanej energii, której wykorzystanie nie powoduje efektu cieplarnianego. Produkcja wodoru za pomocą metod biologicznych jest jednym z obszarów rozwoju technologii, szczególnie ważnym w kontekście zrównoważonej produkcji energii. Prezentowane opracowanie zawiera przegląd ważniejszych metod i procesów biologicznych, umożliwiających produkcję wodoru, korzystających z różnych mechanizmów konwersji energii. W pracy przedstawiono różne podejścia mające na celu udoskonalenie wspomnianych biotechnologii, omówiono również molekularne i genetyczne aspekty produkcji wodoru.
13
Content available Mikrobiologiczne wytwarzanie wodoru z glicerolu
PL
Wykorzystano hodowlę ciągłą beztlenowego osadu dla uzyskania populacji drobnoustrojów zdolnych do prowadzenia fermentacji wodorowej glicerolu. Drobnoustroje wykorzystano w fermentacji prowadzonej w reaktorze kolumnowym typu UASB. Uzyskano 22% redukcję ChZT oraz wydajność wytwarzania wodoru względem glicerolu 0,49 g/g. Słowa kluczowe: biowodór, ciemna fermentacja, glicerol
EN
Continuous culture has been used to select microorganisms which are capable to produce hydrogen from glycerol. Selected microorganisms have been used in the UASB reactor. The COD removal of 22% was obtained. The hydrogen yield with respect to glycerol was equal to 0.49 g/g.
PL
Zbadano wydajność wytwarzania wodoru z mieszaniny lotnych kwasów tłuszczowych z etanolem, propanolem i propano-1,3-diolem w obecności Rhodobacter sphaeroides. Substancje te nie inhibitowały wzrostu bakterii i produkcji wodoru, jednakże propano-l,3-diol nie był metabolizowany. Maksymalna ilość wodoru, 5,2 dm3/dm3, powstała w podłożu z glutaminianem sodu, a najmniejsza w obecności 10 mM jonów amonowych.
EN
Efficiency of hydrogen production from the mixture of volatile fatty acids with ethanol, propanol and propane-l,3-diol in the presence of Rhodobacter sphaeroides was measured. These substances did not inhibit bacterial growth and hydrogen production. However, propa-ne-l,3-diol was not metabolized. The maximum amount of hydrogen (5.2 dm3/dm3) was produced in the medium with sodium glutamate, while the smallest - in the presence of ammonium ions.
15
Content available remote Biologiczna produkcja wodoru z odpadów
PL
Zaprezentowano wybrane sposoby pozyskiwania wodoru. Na obecnym poziomie wiedzy uważa się, że procesem, który w praktyce może być wykorzystany do likwidacji odpadów organicznych, jest fermentacja. W pracy przytoczono dane eksperymentalne, które wskazują, że możliwe jest uzyskanie nawet od 0,5 do 2,5 mola wodoru z organicznych substratów w przeliczeniu na mol glikozy. Wyższą wydajność produkcji (do około 4 mole H2/mol C6H12O6) uzyskuje się wówczas, gdy proces prowadzi się z udziałem czystych kultur drobnoustrojów oraz w zakresie temperatur termofilowych. W pracy przytoczono opinie wielu autorów, którzy podkreślają, że w rozwiązaniach technicznych, ze względu na łatwiejsze prowadzenie procesu korzystniejsze jest użycie mieszanej populacji drobnoustrojów niż czystych kultur. Specjaliści uważają, że do najważniejszych czynników warunkujących wysoką wydajność procesu należą: utrzymanie odpowiednio niskiego ciśnienia parcjalnego wodoru nad roztworem hodowlanym, niskiego stężenia tlenu oraz utrzymanie pH w zakresie od 5 do 6, a także odpowiednie dawkowanie żelaza.
EN
Nowadays, fossil fuels provide the most of world's energy demands. The great disadvantage of conventional fuels is that they all contain carbon what is the reason of carbon dioxide (CO2) emission and, what is more, of global warming. That is the reason why other alternative fuels are being investigated. One of the possible energy carrier is hydrogen. Hydrogen can be produced from a variety of sources, like oil, coal, natural gas, biomass, and water. This literature survey shows the main biological methods of hydrogen production. Biological hydrogen production can be classified into two groups: light driven processes and dark processes. All processes are controlled by enzymes such as hydrogenase or nitrogenase. One of the most promising hydrogen approaches is the conversion of organic wastes from sewage treatment plant. Biological dark fermentation is a promising hydrogen production method that can be also applied for organic wastes utilization purposes. Due to the fact that solar radiation is not a requirement, hydrogen production by dark fermentation does not demand much area and is not affected by the weather condition. Hence, the feasibility of the technology causes that commercial interest is growing. Experimental evidences, shown in that work, indicate that even 0.5 ÷ 2.5 mole of hydrogen can be produced from organic substrates such as glucose. Maximum hydrogen yields (to about 4 mol H2/mol C6H12O6) were achieved from organic material by pure cultures of microorganisms at thermophilic temperatures. However, pure cultures are less useful for industrial purposes because of an easier possibility of contamination. Dark fermentation can be control by following parameters: pH (between 5 and 6), temperature about 50°C. Other factor that influences on hydrogen production is Fe²+ concentration. Tests investigated by Ren and others showed that the iron adding every two days could improve the hydrogen yield. To obtain hydrogen production also conditions of low hydrogen partial pressure and low concentration of O2 should be assure.
EN
Kinetics of hydrogen production by Rhodobacter sphaeroides has been studied. A tungsten lamp enhanced the total amount of evolved hydrogen by 15% and decreased the process duration by 25% in comparison with the Ultra-Vitalux lamp. However, in further studies, the latter lamp was used due to the similarity of its spectrum to the sunlight one. Changes of the malic acid/glu-tamate ratio during activation stage had a little effect on the overall process.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.