Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  biogeochemical model
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We evaluated the temporal and spatial trends of the hydrological (temperature and sea ice) and biochemical (chlorophyll-a concentration) characteristics in springtime in the Baltic Sea. Both are strongly affected by climate change, resulting in a decrease in the duration of sea-ice melting in the previous decade. A new regime of sea ice began in 2008 and in all basins of the Baltic Sea, a rapid warming during spring could be detected. Using satellite data, the temporal and spatial variations in spring bloom were analysed during severe and warmer winters. Using a coupled hydrodynamic-biogeochemical model, we tested the response of spring bloom to the changing ice conditions. The results of the modelling indicated that the presence of ice significantly influences the predicted chlorophyll-a concentration values in the Baltic Sea. Therefore, it is necessary that any coupled model system has a realistic ice model to ensure the best simulation results for the lower trophic food web as well.
EN
Experimental studies of intact sediment cores from the Gulf of Riga, Baltic Sea, were conducted to estimate the response of sediment nutrient fluxes to various near-bottom water oxygen conditions. The experiment was performed in the laboratory using a batch-mode assay type system on the sediment cores held at 4°C and oxygen concentrations maintained at 1, 2, 3, 4 and 5 mg l-1. The results from the experiment were subsequently used to optimise the fit of the sediment denitrification sub-model of the Gulf of Riga basin. Sediment-water fluxes of phosphate were low and directed out of the sediments under all treatments, demonstrating a general decreasing tendency with increasing near-bottom water oxygen concentration. The sediment-water fluxes of ammonium and nitrate+nitrite demonstrated opposing trends: ammonium fluxes decreased whereas nitrate+nitrite fluxes increased with rising near-bottom water oxygen concentration. The modelled fluxes agreed well with the measured ones, with correlation coefficients of 0.75, 0.63 and 0.88 for ammonium, nitrate+nitrite and phosphate fluxes respectively. The denitrification rate in sediments was simulated at oxygen concentrations from -2 to 10 mg l-1. At oxygen concentrations <2 mg l-1 the modelled denitrification was sustained by nitrate transport from water overlying the sediments. With increasing oxygen concentrations the simulated denitrification switched from the process fuelled by nitrates originating from the overlying water (Dw) to one sustained by nitrates originating from the coupled sedimentary nitrification – denitrification (Dn). Dn reached its maximum at an oxygen concentration of 5 mg l-1.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.