Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  biofuel cell
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We have carried out the preparation of reduced graphene oxide aerogels using eco-friendly method that is based on the Hummers method of graphite oxidation without the use of NaNO3 that produces toxic gases. To obtain a porous 3D structure of reduced graphene oxide, we performed the hydrothermal reduction at elevated temperature. We also prepared the rGO aerogel/CNT composite using multiwalled carbon nanotubes as linkers. The rGO aerogels are promising materials as they possess good electrical conductivity (up to 100 S/m) and high surface area and porous structure (similar to 500 m(2)/g). The main goal was to obtain the material for electrodes in enzymatic biofuel cells. Thus, the proper modification was performed using free radical functionalization. It was shown that in order to synthesize rGO aerogels modified with anthracene, the proper order of reactions needs to be provided. The morphology of anthracene modified electrodes was analyzed using scanning electron microscopy, which confirmed their porous structure with non-uniform pore size distribution that ranged between few nanometers to microns. Data obtained by Raman spectroscopy confirmed the successful oxidation and reduction of analyzed materials. UV-Vis spectra revealed the presence of anthracene moieties in examined materials. We also recorded preliminary cyclic voltammograms that confirm an electric conductivity of the obtained structures.
EN
The aim of this study was designing of nanostructured bioelectrodes and assembling them into a biofuel cell with no separating membrane. Carbon nanotubes (CNTs) chemically connected with residues of typical mediators, i.e. ferrocene (Fc) and 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) deposited on glassy carbon electrodes (GCE) were found useful as mediators for the enzyme catalyzed electrode processes. The electrodes were in turn covered with glucose oxidase from Aspergillus niger AM-11 and laccase from Cerrena unicolor C-139, respectively, incorporated in a liquid-crystalline matrix. The nanostructured electrode coating with the cubic phase film containing enzymes acted as the catalytic surface for the enzymatic reactions that is oxidation of glucose at anode and reduction of oxygen at cathode. For the system with mediators anchored to CNTs the catalysis was almost ten times more efficient than on bare GCE electrodes: catalytic current of glucose oxidation was 1 mAcm-2 and oxygen reduction current exceeded 0.6 mAcm-2. The open circuit voltage of the biofuel cell was 0.43 V. Application of the carbon nanotubes increased maximum power output of the constructed biofuel cell to 100 \miWcm-2 without stirring the solution. It is ca. 100 times more efficient than using the same bioelectrodes without nanotubes on the electrode surface.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.