Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  bioelectrochemical system
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The possibilities of simultaneous removal of sulfates and heavy metals (Cu, Ni, Zn) from acid mine drainage have been investigated in two-section bioelectrochemical system (BES). The used BES is based on the microbial sulfate reduction (MSR) process in the anode zone and abiotic reduction processes in the cathodic zone. In the present study, the model acid mine drainage with high sulfate (around 4.5 g/l) and heavy metals (Cu2+, Ni2+ and Zn2+) content was performed. As a separator in the laboratory, BES used an anionic exchange membrane (AEM), and for electron donor in the process of microbial sulfate reduction in the bioanode zone – waste ethanol stillage from the distillery industry was employed. In this study, the possibility of sulfates removal from the cathodic zone was established by their forced migration through AEM to the anode zone. Simultaneously, as a result of the MSR process, the sulfate ions passed through AEM are reduced to H2S in the anode zone. The produced H2S, having its role as a mediator in electron transfer, is oxidized on the anode surface to S0 and other forms of sulfur. The applicability of waste ethanol stillage as a cheap and affordable organic substrate for the MSR process has also been established. Heavy metals (Cu2+, Ni2+ and Zn2+) occur in the cathode chamber of BES in different degrees of the removal. As a microbial fuel cell (MFC) operating for 120 hours, the reduction rate of Cu2+ reaches 94.6% (in waste ethanol stillage) and 98.6% (in the case of Postgate culture medium). On the other hand, in terms of Ni2+ and Zn2+, no significant decrease in their concentrations in the liquid phase is found. In the case of microbial electrolysis cell (MEC) mode reduction of Cu2+– 99.9%, Ni2+– 65.9% and Zn2+– 64.0% was achieved. For 96 hours, the removal of sulfates in MEC mode reached 69.9% in comparison with MFC mode – 35.2%.
EN
Wastewater has high potential as an energy source. Therefore, it is important to recover even the smallest part of this energy, e.g., in microbial fuel cells (MFCs). The obtained electricity production depends on the process rate of the electrodes. In MFC, the microorganisms are the catalyst of anode, and the cathode is usually made of carbon material. To increase the MFC efficiency it is necessary to search the new cathode materials. In this work, the electricity production from yeast wastewater in membrane-less microbial fuel cells with a carbon felt, Ni-Co, Cu-B, and Cu-Ag cathodes has been analyzed. In the first place, the measurements of the stationary potential of the electrodes (with Cu-Ag catalyst obtained by the electrochemical deposition technique) were performed. Next, the analysis of the electric energy production during the operation of the membrane-less microbial fuel cell (ML-MFC). The highest parameters were obtained for the Ni-Co and Cu-Ag catalysts. The cell voltage of 607 mV for Ni-Co and 605 mV for Cu-Ag was obtained. Additionally, the power of 4.29 mW for both cathodes - Ni-Co and Cu-Ag was obtained. Moreover, Ni-Co and Cu-Ag allow the shortest time of COD reduction. Based on the test results (with selected MFC design, wastewater, temperature, etc.), it can be concluded that of all the analyzed electrodes, Cu-Ag and Ni-Co electrodes have the best parameters for use as cathodes in ML-MFC. However, based on the results of this study, it can be concluded that all the tested electrodes can be used as cathode material in MFC.
EN
Azo dye wastewater treatment is urgent necessary nowadays. Electrochemical technologies commonly enable more efficient degradation of recalcitrant organic contaminants than biological methods, but those rely greatly on the energy consumption. A novel process of biofilm coupled with electrolysis, i.e., bioelectrochemical system (BES), for methyl orange (MO) dye wastewater treatment was proposed and optimization of main influence factors was performed in this study. The results showed that BES had a positive effect on enhancement of color removal of MO wastewater and 81.9% of color removal efficiency was achieved at the optimum process parameters: applied voltage of 2.0 V, initial MO concentration of 20 mg/L, glucose loads of 0.5 g/L and pH of 8.0 when the hydraulic retention time (HRT) was maintained at 3 d, displaying an excellent color removal performance. Importantly, a wide range of effective pH, ranging from 6 to 9, was found, thus greatly favoring the practical application of BES described here. The absence of a peak at 463 nm showed that the azo bond of MO was almost completely cleaved after degradation in BES. From these results, the proposed method of biodegradation combined with electrochemical technique can be an effective technology for dye wastewater treatment and may hopefully be also applied for treatment of other recalcitrant compounds in water and wastewater
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.