Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  bioaktywne nanocząstki
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Nanomaterials are the latest group of materials which owes its special features thanks to their nanosize. The most characteristic properties include the large surface area, strong chemical reactivity and tendency to agglomerate. Nanomaterials have wide applications in several disciplines, i.e. materials engineering, medicine and food technology. These materials have high potential in biomedical engineering thanks to increased biological activity when compared with the bulk material. Recent advances in nanotechnology are currently mostly focused on improvement of effective synthesis methods. Sonochemical irradiation is an effective technique for the synthesis nanoparticles. This method is widely used for inorganic nanoparticles production in contrast to organic ones, which could open powerful possibilities of creating bioactive, therapeutic or self-cleaning surfaces. In principle, the introduction of a strong acoustic field into an aqueous solution induces acoustic cavitation. The nucleation, growth and collapse of the bubble during acoustic cavitation are graphically shown in Figure 1. When the bubble reaches a certain size it become resonant with ultrasonic radiation and rapidly increase in size. Then, the bubble becomes unstable and violently collapses. The collapse of microbubbles produces extremely high localized pressures and temperatures (hundreds bar and thousands K) which lead to hot spot. Conditions of sonochemistry are rather radical in comparison to other chemical processes. Moreover, the synthesis and simultaneously embedding nanoparticles into polymer surfaces are possible. This paper constitutes a review of the recent literature in sonochemical synthesis of organic, bioactive nanoparticles. The introduction will focus on a short overview of sonochemistry, the next part will present the mechanism of formation nanoparticles using ultrasounds. Also, some advantages of sonochemistry as a tool for nanomaterials fabrication is presented. In the next section some examples of bioactive nanoparticles prepared in sonochemical reaction are listed and advantages of sonochemical synthesis are discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.