Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  bio-laminates
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The aim of this study was to determine how the change of glass laminate fibres to flax fibres will affect the stability of thin-walled angle columns. Numerical analyses were conducted by the finite element method. Short L-shaped columns with different configurations of reinforcing fibres and geometric parameters were tested. The axially compressed structures were simply supported on both ends. The lowest two bifurcation loads and their corresponding eigenmodes were determined. Several configurations of unidirectional fibre arrangement were tested. Moreover, the influence of a flange width change by ±100% and a column length change by ±33% on the bifurcation load of the compressed structure was determined. It was found that glass laminate could be successfully replaced with a bio-laminate with flax fibres. Similar results were obtained for both materials. For the same configuration of fibre arrangement, the flax laminate showed a lower sensitivity to the change in flange width than the glass material. However, the flax laminate column showed a greater sensitivity to changes in length than the glass laminate one. In a follow-up study, selected configurations will be tested experimentally.
EN
The aim of this study is to check how the change fiber configuration and geometric parameters affect the stability of a thin-walled angle column under compression. Buckling analysis of thin-walled structures made of bio-laminates was presented. Short angles with different configurations of reinforcing fibers and geometric parameters were studied. The laminate under analysis had a matrix made of epoxy resin reinforced with unidirectional flax fibers. The axially compressed structures were simply supported on both ends. Detailed numerical analyses were conducted by the finite element method using Abaqus software. The lowest two bifurcation loads and their corresponding eigenmodes were determined. Several configurations of unidirectional fiber arrangement with different width and length were tested. Results showed that the bio-laminate fiber configuration had a significant effect on the behavior of the compressed structure. Moreover, the change of geometrical parameters significantly influences the stability of the structure. In general, it was found that the bifurcation load decreased with the increase of the length of the L-profile column. However, increasing the flange width of the column resulted in a reduction of the bifurcation load (applies to a column with a length of 300 mm and longer). In paper the first stage of research is presented, which will be experimentally verified in subsequent studies.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.