The Apollonian metric is a generalization of the hyperbolic metric to arbitrary open sets in Euclidean spaces. In this article we show that the Apollonian metric is comparable, to the jG metric in the set G if and only if its complement is unbounded and thick in the sense of Väisälä Vuorinen and Wallin [Thick sets and quasisymmetric maps, Nagoya Math. J. 135 (1994), 121-148] . These conditions are also equivalent to the following: there exists L > 1 such that all Euclidean L-bilipschitz mappings are Apollonian bilipschitz with uniformly bounded constant.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.