Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  bezprądowe powlekanie niklem
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The paper discussed the effect of heat treatment on electroless nickel-yttria-stabilised zirconia (Ni-YSZ) cermet coating. Ni-YSZ cermet coating has potential applications such as cutting tools, thermal barriers, solid oxide fuel anode, and various others. The compatibility of ceramic YSZ and metallic nickel in terms of the mechanical properties such as hardness by varying the heating temperature, time and ceramic particle size is highlighted. Design/methodology/approach: Ni-YSZ cermet coating was deposited onto a highspeed steel substrate using the electroless nickel co-deposition method. The temperature and time were varied in a range of 300-400°C and 1-2 hours, respectively. The microhardness measurements were carried out using a Vickers microhardness tester (Shimadzu) according to ISO 6507-4. The surface characterisation of the cermet coating was carried out using JOEL Scanning Electron Microscope (SEM) coupled with Energy Dispersive X-ray (EDX) JSM 7800F. The crystallographic structure of materials was analysed by X-ray diffraction (XRD) Bruker D8 Advance instrument. Findings: It was found that the microhardness of Ni-YSZ cermet coating with the ratio of 70:30, respectively, is directly proportional to the heating temperature and time. Heating the Ni-YSZ cermet coating at 300°C from room temperature (rtp) to 1 hour shows a 12% microhardness increment, while from 1 to 2 hours gives a 19% increment. Compared to heating at 350°C and 400°C, the increment is more significant at 33% and 49% for rtp to 1 hour and 8% and 16% for 1 to 2 hours, respectively. In addition, the effect of varying YSZ particle size in the Ni-YSZ cermet gave response differently for heating temperature and heating time. Research limitations/implications: The paper is only limited to the discussion of the heat treatment effect on Ni-YSZ cermet coating hardness property. The tribological effect will be in future work. Practical implications: The microhardness data may vary due to the Vickers microhardness force applied and the amount of ceramic particle incorporation and phosphorus content in the nickel matrix. Originality/value: The value of this work is the compatibility of the ceramic YSZ and metallic nickel matrix in terms of mechanical properties, such as hardness, upon heat treatment.
2
Content available remote Mechanical property evaluation aluminium 6061 nickel coated cenosphere composites
EN
In recent years, among all the aluminium alloys, Al6061 is gaining much popularity as a matrix material to prepare MMCs owing to its excellent mechanical properties and good corrosion resistance. Fly ash cenospheres are primarily a by-product in power generation plants. Research is in progress to effectively use this byproduct to produce new usable and profitable materials as they pose major disposal and environmental problems. In the light of the above, the present investigation is aimed at development of metal coated cenosphere reinforced Al6061 composites and to characterize their mechanical properties. Al6061 nickel coated composites have been prepared by liquid metallurgy route by varying percentage of nickel coated cenospheres between 2-10% by weight in steps of 2%. Density, hardness and tensile behaviour of the composites is carried out. It is observed that there is an increase in the values of hardness, density of the composite with an increasing percentage of the nickel coated cenosphere reinforcements. There is also a notable increase in the tensile strength as well as reduction in ductility of the prepared composite. Fractographs to indicate the behaviour of the composites have also been depicted in the paper.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.