Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  bed shear stress
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The investigation of the bursting process and coherent structures around circular and square cylindrical structures for various angular alignments over a rigid plane bed are introduced. The coherent structures and shear stresses perform a substantial characteristic in bed particle entrainment and transport from the bed around these structures. Hence, bed shear stress, power spectra are determined from the measured velocity data, in addition, third-order correlation, turbulence intensity, and kinetic energy were investigated using quadrant analysis to explore the correlation between coherent structures and sediment movement. Turbulent coherent structures due to the variations of submergence depth, velocity, orientation angle of the square cylinder, and cylinder size are also investigated. Further, the measured velocity data using Acoustic Doppler Velocimeter were validated with numerical simulations using COMSOL Multiphysics 5.0 with k-ω turbulence closure model. Outcomes indicate that the wake zone length rises with the rise of submergence ratio for the square cylinder with different angular alignments than the circular and square cylindrical structures. Bed shear stress is higher for the square cylinder with different angular alignments than the circular cylinder. The wake vortex strength increases with angular alignment signifying excessive movement of bed sediments from the bed around the cylindrical structures. The interaction events predominate near the bed and middle height of the cylinder, whereas ejection and sweep events dominate far away from the bottom toward the top of the cylinders. The stress fraction is maximum for square cylinders with higher alignment angles.
2
Content available remote Note on estimating bed shear stress caused by breaking random waves
EN
This note presents a method of how the bed shear stress caused by breaking random waves on slopes can be estimated. This is obtained by adopting the Sumer et al. (2013) bed shear stress formula due to spilling and plunging breaking waves on hydraulically smooth slopes combined with the Myrhaug and Fouques (2012) joint distribution of surf similarity parameter and wave height for individual random waves in deep water. The conditional mean value of the maxima of mean bed shear stress during wave runup given wave height in deep water is provided including an example for spilling and plunging breaking random waves corresponding to typical field conditions. Another example compares the present results with one case from Thornton and Guza (1983) estimating the wave energy dissipation caused by bed shear stress beneath breaking random waves.
EN
The paper deals with the sandy coastal zone at Lubiatowo in Poland (the south Baltic Sea). The study comprises experimental and theoretical investigations of hydrodynamic and lithodynamic processes in the coastal region located close to the seaward boundary of the surf zone and beyond the surf zone. The analysis is based on field data collected at the IBW PAN Coastal Research Station in Lubiatowo. The data consist of wind velocity reconstructed from the long-term wave climate, deep-water wave buoy records and sea bottom soil parameters. Nearbed flow velocities induced by waves and currents, as well as bed shear stresses are theoretically modelled for various conditions to determine sediment motion regimes in the considered area. The paper discusses the possibility of occasional intensive sediment transport and the occurrence of distinct sea bed changes at bigger water depths.
EN
The paper presents results of field and theoretical investigations of a natural sandy shore located near the IBW PAN Coastal Research Station in Lubiatowo (Poland, the south Baltic Sea). The study site displays multi-bar cross-shore profiles that intensively dissipate wave energy, mostly by breaking. The main field data comprise offshore wave parameters and three cross-shore bathymetric profiles. Waveinduced nearbed velocities and bed shear stresses are theoretically modelled for weak, moderate, strong and extreme storm conditions to determine sediment motion regimes at various locations on the seaward boundary of the surf zone. The paper contains a discussion on the depth of closure concept, according to which the offshore range of sea bottom changes can be determined by the extreme seasonal deep-water wave parameters.
5
Content available remote Motion of water and sediment due to non-breaking waves in the swash zone
EN
A long wave run-up theory is applied to the modelling of wave-induced flow velocities, sediment transport rates and bottom changes in a swash zone. First, the properties of the water tongue motion and the resulting lithodynamic response are analysed theoretically. Next, an attempt is made to run the model for the natural conditions encountered on the southern Baltic Sea coast. The Lagrangian swash velocities are used to determine the Eulerian phase-resolved bed shear stresses with a momentum integral method, after which the motion of sand is described by the use of a two-layer model, comprising bedload and nearbed suspended load. Seabed evolution is then found from the spatial variability of the net sediment transport rates. The results presented are limited to cases of the small-amplitude waves that seem to be responsible for accretion on beaches.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.