Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  batch group normalization
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In computer vision, Convolutional Neural Networks (CNNs) have become a foundation for image analysis. They excel in tasks such as object recognition, classification, and more, semantic segmentation. In order to achieve better accuracy, it is crucial to apply normalization techniques to the network for enhancing overall performance. This paper introduces an innovative approach that incorporates Batch Group Normalization (BGN) into the popular U-Net for binary semantic segmentation, with a particular focus on aerial road detection. Our research primarily focuses on evaluating the BGN-UNet’s performance compared to traditional normalization techniques, such as Batch Normalization (BN) and Group Normalization (GN). With a batch size of 2, the U-Net model enhanced with Batch Group Normalization (BGN-UNet) achieves a remarkable Mean IoU of 98.4% in aerial road segmentation, demonstrating its superior accuracy in this task.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.