Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  batch adsorption
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The present study utilised date palm fibre (DPF) waste residues to adsorb Congo red (CR) dye from aqueous solutions. The features of the adsorbent, such as its surface shape, pore size, and chemical properties, were assessed with X-ray diffraction (XRD), BET, Fourier-transform infrared (FTIR), X-ray fluorescence (XRF), and field emission scanning electron microscope (FESEM). The current study employed the batch system to investigate the ideal pH to adsorb the CR dye and found that acidic pH decolourised the dye best. Extending the dye-DPF waste mixing period at 25 °C reportedly removed more dye. Consequently, the influence of the starting dye and DPF waste quantity on dye removal was explored in this study. At 5 g/L dye concentration, 48% dye removal was achieved, whereas at low dye concentrations, only 40% of the dye was removed. The current study also evaluated the DPF particle size created for dye adsorption, yielding a 66% optimal powder size removal. The heat impact assessment performed in this study indicated that increased temperature affected the amount of dye eliminated from aqueous solutions, where a 72% removal was recorded at 45 °C. The pseudo-first- and pseudo-second-order models were utilised to predict the maximum CR dye adsorption with DPF waste. Resultantly, the Langmuir-Freundlich experimental DPF waste CR adsorption documented pseudo-second-order kinetics. In a fixed bed reactor, the DPF waste has been reported to remove CR dye constantly. Consequently, several factors affecting the removal process, including the effects of primary dye, the flow rate of the liquid inside the column, the depth of the filling inside the column, and flow rate were assessed. The results were simulated in the COMSOL® program and compared to practical experiments, which yielded a 99% match. Conclusively, DPF waste could remove several colours from wastewater via active removal.
EN
The objective of the current work was to investigate the effectiveness and mechanism of nitrate removal from an aqueous solution by adsorption using metal (Zr4+)loaded chitosan and Bentonite beads (Cs-Bn-Zr). The study was carried out in a batch system, and the effect of the critical factors on the adsorption performance, such as contact time, initial nitrate anion concentration, and adsorbent dosage, were investigated. In addition, the adsorption equilibrium models of the Langmuir, Freundlich, and Temkin isotherms were evaluated. The modified adsorbent was characterized by Fourier transform infrared spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and analysis with an energy-dispersive X-ray analyzer (EDX). The results demonstrated that at 0.2 g of CS-Bn-Zr adsorbent with an initial concentration of 50 mg/l and a contact time of 120 minutes, the maximum removal of nitrate ions was found to be 97.28%. The result demonstrated that the maximum adsorption capacity of nitrite ions on the manufactured bead was 110.46 mg/g. The Freundlich model was shown to be the most effective for the adsorbate of nitrate. The pseudo–first-order model fits the adsorption kinetic data well.
EN
The Malaysia’s wastewater treatment plant has yet to find an environmentally alternative for the sludge treatment before disposal. In majority of cases, the sludge containing a high amount of heavy metals including Fe, Ti, Mn, Zn, As, Cu, Ni, Zr, and Ga, is disposed to the environment through landfill. The recovery of valuable materials such as manganese from the sludge is an alternative path towards zero dumpings of schedule waste as well as a way of reducing the possible pollutant release to the environment. It can be achieved through adsorption, as it provides a cheap yet flexible, method which is simple and easy to implement. Kenaf derived from Hibiscus cannabis was proven as a good adsorbent material for the heavy metals recovery. This project aims at utilizing Kenaf fiber as activated carbon to recover heavy metals from wastewater sludge in batch adsorption. The adsorbent surface area and pore characteristics and elemental analysis were observed under adsorbent characterization. The effect of contact time, sludge pH and temperature to the removal efficiency was investigated. The adsorption isotherm was also studied. The result showed that the developed kenaf activated carbon is a promising adsorbent which might be used for some heavy metals. From batch adsorption study, it was observed that KFAC is able to remove an average 30% of the heavy metal element from the sludge. It was also found that the best removal is achieved in a neutral pH solution, increasing the contact time will increase the equilibrium uptake, while the increasing temperature will increase the percent removal of heavy metals. It was concluded that the Kenaf based activated carbon can be used for the recovery of heavy metals from the wastewater sludge through batch adsorption.
EN
Nanomaterials have a great potential for the possible oil spill cleanup due to their unique wettability characteristics and large surface area. This work reports investigations on oil sorption behavior of a commercially available hydrophobic nano-silica when tested with a light paraffinic crude oil and a heavy aromatic crude oil. Sorption experiments were carried out in batch sorption system under static and dynamic conditions. Influence of mass of sorbent, sorption time, temperature and pH value of water on sorption capacity were tested and compared to find an optimal operational conditions for adsorption process. Nanopowder exhibited high selectivity for absorbing oil from water; a removal efficiency found by gravimetric method was high as 96% to 99%. The sorption capacity inereases with the inerease of sorption time and mass of sorbent. Nano-silica powder was found to be effective sorbent material as compared to widely used synthetic fibers
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.