Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  baseline estimation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A correctly estimated component of fetal heart rate signal (FHR) – so called baseline – is a precondition for proper recognition of acceleration and deceleration patterns. A number of various algorithms for estimating the FHR baseline was proposed so far. However, there is no reference standard enabling their objective evaluation, and thus no methodology of comparing the different algorithms still exists. In this paper we propose a method for evaluation of automatically determined baseline in reference to a set of experts, based on ten separate groups of signals comprising typical variability patterns observed in the fetal heart rate. As it was proposed earlier [1], the given algorithm is evaluated based on the characteristic patterns detected using the obtained baseline, instead of direct analysis of the baseline shape. For the purpose of quantitative assessment of the estimated baseline a new synthetic inconsistency coefficient was applied. The proposed methodology enabled to evaluate eleven well-known algorithms. We believe that the method will be a valuable tool for assessment of the existing algorithms, as well as for developing the new ones.
EN
A number of algorithms for estimating the so called fetal heart rate baseline was proposed so far. However, there is no reference pattern enabling their objective evaluation, and thus no methodology of comparing the competing algorithms still exists. In this paper we propose a method for evaluation of automatically determined baseline in reference to a group of experts, basing on ten separate groups of signals comprising typical patterns observed in the fetal heart rate. For the purpose of quantitative assessment of the estimated baseline a new synthetic inconsistency coefficient is presented. The proposed methodology was applied to evaluate ten well-known algorithms. We believe that the method will be a valuable tool for assessment of the existing algorithms, as well as for developing new ones.
3
EN
Analysis of the fetal heart rate (FHR) signal is aimed at detection of clinically important patterns like bradycardia or tachycardia, accelerations and decelerations, as well as quantification of instantaneous FHR variability. Automated pattern recognition methods are based on estimation of so-called FHR baseline. It is a common opinion that the baseline estimation algorithm determines the efficiency of an entire process of quantitative signal analysis. Automated methods for baseline determination have been continuously improved for many years since there are still new classes of FHR signals being identified, for which the previous methods fail. The new method proposed for the baseline estimation is based on the weighted myriad filtering. The application of this method required filter parameter selection ensuring its operation according to clinical guidelines for baseline estimation. A very important feature of the myriad filtering is that there is no need for preliminary interpolation of signal loss segments. Our new algorithm was tested against two other methods. Thirty one-hour FHR recordings were selected for the analysis. Quantitative inconsistency was measured using differences between corresponding baseline samples. Additionally, the baselines were evaluated as regards their influence on identification of the acceleration and deceleration patterns. Obtained results allow us to conclude that the new algorithm delivers more reliable baselines particularly for signals with specific changes of the basal FHR level which has been recognized as difficult for baseline estimation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.