Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  banana peel
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The development of nanoadsorbents for remediation of polluted water in order to obtain clean and healthy water quality has been carried out, namely the incorporation of chitosan, magnetic, and activated carbon materials. The activated carbon used is the result of the synthesis of banana peel waste nanocrystals, while the magnetic is Fe3O4. The method used in this study is an experimental method with coprecipitation through several stages, namely (1) magnetic synthesis of Fe3O4 by thecoprecipitation method, (2) preparation of chitosan solution, (3) synthesis of activated carbon nanocrystals from banana peel waste by the milling process, (4) merger of the three materials, and (5) characterization with SEM/EDX, XRD, FTIR, BET, PSA, TGA, and AAS to test the performance of the material against polluted water. The study found that 210 minutes was the optimal time for the heavy metal ions Fe, Mn, Zn, and Pb to adsorption.The best sample was sample S4 with a ratio of 1:2:2 with adsorption for Zn 92.43%, Fe 95.44%, Mn 89.54%, and Pb 84.38%. For the heavy metal ions: Mn 5624 mg/g, Fe 5849.4 mg/g, Zn 4894.22 mg/g, and Pb 468.2 mg/g, the Langmuir model was used. The adsorption kinetics showed that the reaction order for Pb, Mn, Zn, and Fe ions varied with pseudo-first order and pseudo-second order. Carboxymethyl cellulose nanoadsorbents are effective in remediating the water contaminated with heavy metals, such as Pb, Mn, Zn, and Fe, meeting the environmental health quality standards for water media for sanitation hygiene purposes.
EN
The opportunity of utilizing activated carbon prepared from banana peels (BPAC) as a permeable reactive barrier (PRB) to eliminate copper (Cu+2) from the contaminated ground water has been explored. The activated carbon was prepared from banana peels by chemical activation utilizing a drenching agent, for example, a phosphoric acid (H3PO4). The Influence of different factors including initial copper amount, contacting duration, agitation speed, initial pH of the solution and sorbent dosage was studied in batch experiments. The optimum magnitudes for these factors that resulted in the highest copper removing efficacy (96%) were 40 minutes, 6, 250 rpm, 50 mg/l, and 1 mg/100 ml, respectively. The isotherm models of Freundlich and Langmuir have been utilized to analyze the sorption data for Cu+2 ions acquired via batch studies. The Langmuir model has been utilized to explain the sorption of Cu+2 onto BPAC, according to the findings. The partial differential formulas that describe copper transport in one–dimensional (1D) under equilibrium conditions have been solved utilizing COMSOL Multiphysics 3.5a software based on the finite element technique. The PRB has a significant function in preventing the copper plume from moving, according to the expected findings (COMSOL solution) and experimental findings. Finally, the excellent agreement between anticipated (theoretical) and actual findings, with an RMSE of less comparison with 0.1%, demonstrated that these techniques are useful and efficient instruments for describing copper transport processes.
EN
Arsenic is one of the most harmful pollutants in groundwater. In this paper, the Nepali bio sand filter (BSF) was modified with different bio-adsorbents, and proved to be an efficient method for arsenic removal from groundwater. Three different bio-adsorbents were used to modify the Nepali BSF. Iron nails and biochar BSF, ~96% and ~93% arsenic removal was achieved, within the range of WHO guidelines. In iron nails, BSF and biochar BSF ~15 dm3∙h–1 arsenic content water was treated. In the other two BSFs, rice-husk and banana peel were used, the arsenic removal efficiency was ~83% of both BSFs. Furthermore, the efficiency of rice-husk and banana peel BSFs can be increased by increasing the surface area of the adsorbent or by reducing the flow rate.
EN
The adsorption of Eurozol Navy Blue (ENB) reactive dye was examined using banana peel and sugarcane bagasse powders. Several parameters such as pH, contact time, agitation speed, temperature, initial dye concentration, and adsorbent dosage were considered and their impact on dye adsorption efficiency was evaluated. The removal percentages of ENB dye due to adsorption on banana peel and sugarcane bagasse were 72% and 70%, respectively. Simultaneous dosing of both biosorbents resulted in 68% dye removal. The Langmuir isotherm model was found to fit the adsorption of ENB dye on banana peel and sugarcane bagasse powders. The corresponding maximum adsorption capacities were equal to 24.09, 32.46, and 27.54 mg/g for banana peel powder, sugarcane bagasse powder, and the mixture of adsorbents, respectively.
EN
The purpose of this study was to use statistical techniques to characterise bio-composites made from sisal fibres and bio-resin from raw banana peel. The fibres were treated with sodium hydroxide, combined with a bio-resin made from banana peel, and then a bio-composite material was developed. The effect of the fibre volume fraction, glycerine and bio-resin mass on the bio-composite’s tensile and compressive properties was investigated using universal rotatable design and multiple regression. The paired T-test conducted exhibited a significant improvement in the mechanical properties of the treated fibres. Sisal bio-composite showed a tensile strength of 5.2 MPa with an adjusted R2 value of 0.91, Young’s modulus of 11.99 MPa (adjusted R2 of 0.92), percentage elongation of 1.77% (adjusted R2 of 0.95), and compressive strength of 2.94 MPa (adjusted R2 of 0.90). The bio-composite could becompared to a commercial composite and solid wood boards, and hence it is an alternative to non-renewable, non-biodegradable petroleum and solid wood products for partition, ceiling and notice board applications.
PL
Celem pracy było wykorzystanie technik statystycznych do charakteryzowania biokompozytów wykonanych z włókien sizalowych i biożywicy z surowej skórki banana. Włókna potraktowano wodorotlenkiem sodu, w połączeniu z biożywicą ze skórki banana, a następnie opracowano materiał bio-kompozytowy. Zbadano wpływ frakcji objętościowej włókna, gliceryny i masy biożywicy na właściwości rozciągające i ściskające biokompozytów, wykorzystując uniwersalną konstrukcję obrotową i wielokrotną regresję. Sparowany test T-test wykazał znaczną poprawę właściwości mechanicznych obrabianych włókien. Bio-kompozyt wykazywał wytrzymałość na rozciąganie równy 5,2 MPa przy skorygowanej wartości R2 wynoszącej 0,91, module Younga 11,99 MPa (skorygowany R2 równy 0,92), procentowym wydłużeniu 1,77% (skorygowany R2 równy 0,95) i wytrzymałości na ściskanie wynoszącej 2,94 MPa (skorygowany R2 równy 0,90). Biokompozyt można porównać do komercyjnego kompozytu i litego drewna, a zatem może być alternatywą dla nieodnawialnych, niebiodegradowalnych produktów z ropy naftowej i litego drewna do zastosowań w ścianach działowych, sufitach i tablicach ogłoszeń.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.