Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  back propagation neural network
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The purpose of this study was to develop a sound quality model for real time active sound quality control systems. The model is based on an optimal analytic wavelet transform (OAWT) used along with a back propagation neural network (BPNN) in which the initial weights and thresholds are determined by particle swarm optimisation (PSO). In the model the input signal is decomposed into 24 critical bands to extract a feature matrix, based on energy, mean, and standard deviation indices of the sub signal scalogram obtained by OAWT. The feature matrix is fed into the neural network input to determine the psychoacoustic parameters used for sound quality evaluation. The results of the study show that the present model is in good agreement with psychoacoustic models of sound quality metrics and enables evaluation of the quality of sound at a lower computational cost than the existing models.
EN
Streamflow modelling is a very important process in the management and planning of water resources. However, complex processes associated with the hydro-meteorological variables, such as non-stationarity, non-linearity, and randomness, make the streamflow prediction chaotic. The study developed multi linear regression (MLR) and back propagation neural network (BPNN) models to predict the streamflow of Wadi Hounet sub-basin in north-western Algeria using monthly hydrometric data recorded between July 1983 and May 2016. The climatological inputs data are rainfall (P) and reference evapotranspiration (ETo) on a monthly scale. The outcomes for both BPNN and MLR models were evaluated using three statistical measurements: Nash–Sutcliffe efficiency coefficient (NSE), the coefficient of correlation (R) and root mean square error (RMSE). Predictive results revealed that the BPNN model exhibited good performance and accuracy in the prediction of streamflow over the MLR model during both training and validation phases. The outcomes demonstrated that BPNN-4 is the best performing model with the values of 0.885, 0.941 and 0.05 for NSE, R and RMSE, respectively. The highest NSE and R values and the lowest RMSE for both training and validation are an indication of the best network. Therefore, the BPNN model provides better prediction of the Hounet streamflow due to its capability to deal with complex nonlinearity procedures.
EN
The safety of workers, the environment and the communities surrounding a mine are primary concerns for the mining industry. Therefore, implementing a blast-induced ground vibration monitoring system to monitor the vibrations emitted due to blasting operations is a logical approach that addresses these concerns. Empirical and soft computing models have been proposed to estimate blast-induced ground vibrations. This paper tests the efficiency of the Wavelet Neural Network (WNN). The motive is to ascertain whether the WNN can be used as an alternative to other widely used techniques. For the purpose of comparison, four empirical techniques (the Indian Standard, the United State Bureau of Mines, Ambrasey-Hendron, and Langefors and Kilhstrom) and four standard artificial neural networks of backpropagation (BPNN), radial basis (RBFNN), generalised regression (GRNN) and the group method of data handling (GMDH) were employed. According to the results obtained from the testing dataset, the WNN with a single hidden layer and three wavelons produced highly satisfactory and comparable results to the benchmark methods of BPNN and RBFNN. This was revealed in the statistical results where the tested WNN had minor deviations of approximately 0.0024 mm/s, 0.0035 mm/s, 0.0043 mm/s, 0.0099 and 0.0168 from the best performing model of BPNN when statistical indicators of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Root Mean Square Error (RRMSE), Correlation Coefficient (R) and Coefficient of determination (R2) were considered.
EN
In this work, digital Tuberculosis (TB) images have been considered for object and image level classification using Multi Layer Perceptron (MLP) neural network activated by Support Vector Machine (SVM) learning algorithm. The sputum smear images are recorded under standard image acquisition protocol. The TB objects which include bacilli and outliers in the considered images are segmented using active contour method. The boundary of the segmented objects is described by fifteen Fourier Descriptors (FDs). The prominent FDs are selected using fuzzy entropy measures. These selected FDs of the TB objects are fed as input to the SVM learning algorithm of the MLP Neural Network (SVNN) and the result is compared with the state-of-the-art approach, Back Propagation Neural Network (BPNN). Results show that the segmentation method identifies the bacilli which retain their shape in-spite of artifacts present in the images. The methodology adopted has significantly enhanced the SVNN accuracy to 91.3% for object and 92.5% for image level classification than BPNN.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.