Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  azo dye
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Textile industries are among the most environmentally unsustainable businesses, releasing large amounts of effluent that endangers ecosystem health. Constructed wetlands (CWs) are low-cost eco-technical treatments for industrial wastewater control. The CWs are self-contained remediation systems that do not require external energy and have basic mechanisms for pollutant removal, such as biological, chemical, and physical processes. For more than sixty years, constructed wetlands have been utilized to clean wastewater. Most applications have been developed to treat municipal or household wastewater, although CWs are now successfully used to treat a wide range of wastewater types. Constructed wetlands were also employed to treat textile industry effluents in the 1990s. The survey indicated that textile manufacturing wastewaters were treated using subsurface and surface-flow wetlands. Both horizontal and vertical flow systems have been designed within subsurface flow-created wetlands. In addition, many hybrid-built wetlands have recently been documented in the literature for textile industrial wastewater treatment. According to the survey, textile industrial wastewater is treated in constructed wetlands on all continents, and this research includes the data from 65 constructed wetlands in 21 nations worldwide. This paper examined the latest improvements and discoveries in CWs and the many types of CWs used for textile wastewater treatment. The paper also demonstrated state-of-the-art integrated technologies for improving the performance and sustainability of CWs, such as CW-MFC systems.
EN
Azo dye is widely used in the textile industry since it is cost effective and simple to use. However, it becomes a continuous source of environmental pollution due to its carcinogenicity and toxicity. Various methods had been used to remove the azo dye in solution. One of the famous and frequently used is the Fenton process. The Fenton process is one of the advanced oxidation processes where iron catalysed hydrogen peroxide to generate hydroxyl radical. Treating azo dyes in solution requires a catalyst to enhance the process of degradation. Herein, high entropy alloys (HEAs) have been proposed as a catalytic material to enhance the performance of Fenton process for azo dye degradation. HEAs have been reported as a promising catalyst due to its high surface area. The higher the number of active sites, the higher the rate of azo dye degradation as more active sites are available for adsorption of azo dyes. The results have shown that HEAs can be used as a catalyst to fasten the Fenton reaction since the degradation time is proven to be shorter in the presence of HEAs. The method derived from the result of this study will contribute in treating azo dyes for wastewater management in the Fenton process.
EN
Synthetic dyes are extensively used in various industries like textile and food industry and are responsible for generation of colored and toxic wastewater. The aim of study was to evaluate decolorization efficiency of White Rot Fungi P.ostreatus (strain BWPH) for dyes belonging to different classes: Anthanthrone Red (anthraquinone dye) and Disazo Red (azo dye) having concentration of 0.08g/l. The Daphnia magna immobilization test was performed to check zoo toxicity of samples during and after treatment. The result show that maximum decolorization efficiency achieved for Anthanthrone Red and Disazo Red dye after 168h was 94.31% and 73.13% respectively. The zoo toxicity test reflects that the pure dyes were much less toxic to D.magna at higher concentration. In contrast, the post process samples were more toxic to organism. It reflected production of toxic metabolites because of enzymatic degradation/biotransformation of dye. For anthraquinone dye, post process sample of 0.25 h was less toxic as compared to 168 h sample. Toxicity Unit was 23.52(class IV), and 2.61(class III) respectively for Anthanthrone Red and Disazo Red post process sample. The conducted research showed high potential of BWPH strain for decolorization dyes belonging to different classes. But the mycelium produces toxic substances during the decolorization process. It may be related to the biodegradation of these substances to toxic metabolites. Further studies have indicated to optimize the process of decolorization.
4
Content available remote An Approach to Estimate Dye Concentration of Domestic Washing Machine Wastewater
EN
This article focuses on developing a methodology which can be used to estimate the concentration of dyestuff released from textiles during domestic laundering, so that further studies involving decolorization of the wastewater from domestic washing machine can be conducted in an attempt to develop eco-friendly domestic washing processes. Due to the complexity of the problem, an approach was adopted so that, as an initial step, synthetic red and blue reactive dye solutions were prepared as representative wastewater solutions using Reactive Red 195 and Reactive Blue 19 dyestuffs for the estimation of dye concentration. This was followed by an experimental work consisting of washing tests involving the calculation of dye concentration in the wastewater obtained from domestic washing machine as well as tergotometer as a machine simulator. For this part of the work, dyed cotton plain jersey fabric samples were used to obtain wastewater solutions. All the dye solutions and the wastewater samples were measured with VIS spectrophotometer, and the maximum absorbance values were obtained at relevant wavelengths. Although the characteristics of absorbance spectra of synthetic and wastewater solutions were very different, the maximum absorbance values of both solutions overlapped at relevant wavelengths. The concentration of the dyestuff was calculated from the absorbance values measured at 540 and 592 nm for the red and blue, respectively. The statistical analysis of the data suggested that tergotometer can be used as a domestic washing machine simulator. Moreover, the regression analysis done for the dyestuff concentration under discussion revealed that the most significant factor was the washing step (main wash or rinsing) (89.5%) followed by color (red or blue) (3.4%) and washing device (washing machine or tergotometer) (1.5%).
EN
The usefulness of untreated (H-NM) as well as modified by sodium benzoate (H-SB) and sulfuric acid (H-SA1 and H-SA2) halloysites as low-cost adsorbent for the removal of Direct Orange 26 azo dye from aqueous solutions was investigated. The kinetic data were evaluated in terms of the pseudo-first order and pseudo-second order kinetic models, while the equilibrium adsorption data were analyzed by the Freundlich and Langmuir isotherm equations. The data follows the pseudo-second order kinetic and Langmuir adsorption models. The DO26 adsorption capacities were 64.93, 74.07, 303.0, and 384.4 μmol/g for the H-NM, H-SB, H-SA1, and H-SA2, respectively. Adsorption of the dye was strongly pH dependent; no effect of ionic strength was observed. The study revealed that halloysites, especially acid-activated halloysites, could be used as an effective and low-cost adsorbents.
EN
This work focuses on biodegradation of industrial Direct Yelow 28 (C.I. No 19555, CAS 800-72-9), Direct Red 80 (C.I. No 35780, CAS 2610-10-8), and Direct Blue 71 (C.I. No 34140, CAS 4399-55-7) azo dyes using selected microscopic fibrous fungi of the Aspergillus genus like A. candidus, A. iizukae and A. niger in aqueous medium. We also attempted to optimize experimental conditions of the biodegradation process and to verify inhibitory effects of dyes at different concentrations on fungi activity.
PL
Niniejsza praca koncentruje się na biodegradacji przemysłowych barwinków azowych Direct Yelow 28 (CI nr 19555, CAS 800-72-9), Direct Red 80 (CI nr 35780, CAS 2610-10-8) i Direct Blue 71 (CI nr 34140, CAS 4399 -55-7) przy użyciu wybranych mikroskopijnych włóknistych grzybów z rodzaju Aspergillus, takich jak A. candidus, A. iizukae i A. niger w środowisku wodnym. Przeprowadzono próby optymalizacji warunków eksperymentalnych procesu biodegradacji i weryfikacji hamującego wpływu barwników o różnych stężeniach na aktywność grzybów.
EN
In this study, we present a systematic study of linear and nonlinear optical properties of Para Red with the aim of Z-scan technique and quantum mechanical calculations. The Z-scan experiments were performed using a 532 nm Nd: YAG (SHG) CW laser beam. Para Red exhibited a strong nonlinear refractive index, nonlinear absorption coefficient and third-order nonlinear susceptibility 3.487 × 10-6 cm2/W, 2.341 × 10-1 cm/W and 2.157 × 10-4 esu, respectively. Also, quantum chemical analysis was used for the calculation of the dipole moment µ, dipole polarizability α, anisotropy of polarizability Δα and molecular hyperpolarizabilities (β, γ). The results revealed that Para Red has large first and second hyperpolarizabilities. However, from the obtained results, it was found that Para Red can be a promising material for applications in the development of non-linear optical materials.
8
Content available remote Sorption dynamics of Direct Orange 26 dye onto a corncob plant sorbent
EN
The azo dye and plant-derived sorbent system was investigated in this paper. Direct Orange 26 azo dye was acquired from Boruta-Zachem Kolor Sp. z o.o. Chemically modified granulated corncobs obtained from Chipsi Mais Germany were used as the biosorbent. The changes in the dye and sorbent concentrations with time were measured and used for further calculations. The experiments were carried out in a laboratory fixed bed column. Breakthrough curves were plotted for different initial concentrations, volumetric flow rates and bed heights. Sorption dynamics was described by a model presented in the literature. It was demonstrated that Infrared analysis of the system allows to determine the nature of the dye-sorbent bond. It was found that corncobs can be used as a promising sorbent material.
PL
W pracy prowadzono badania dla układu barwnik azowy - sorbent roślinny. Barwnik azowy Direct Orange 26 pochodził z Zakładu Boruta-Zachem Kolor Sp. z o.o. Jako biosorbentu użyto modyfikowanych chemicznie granulowanych kolb kukurydzy. Wykonano eksperymenty w kolumnie, kontrolując w czasie zmiany stężenia barwnika w roztworze i sorbencie. Wyznaczono krzywe przebicia w zależności od stężenia początkowego roztworu, objętościowego natężenia przepływu i wysokości złoża. Na tej podstawie dokonano opisu matematycznego dynamiki sorpcji w oparciu o model prezentowany w literaturze. Stwierdzono możliwość wykorzystania kolb kukurydzy jako obiecującego materiału sorpcyjnego.
EN
The azo dye and plant derived sorbent system was investigated in this paper. Direct Orange 26 dye was acquired from Boruta-Zachem Kolor Sp. z o.o. Corncobs obtained from Chipsi Mais Germany were used as the biosorbent. The changes in the dye and sorbent concentrations with time were measured and used for further calculations. The experiments were carried out in a laboratory fixed-bed column. Sorption dynamics were described by a model presented in the literature. It was found that corncobs can be used as a promising sorbent material.
EN
The aim of the study was to determine the efficiency of decomposition of azo dye C.I. Direct Yellow 86 by the Fenton method in the presence of nanoparticles of iron oxides and to compare it with the classical Fenton method. Water solutions of the dye were subjected to the classical purification method with the application of ferrous sulfate and – for comparison – to a process in which iron (II,III) oxide nanopowder was added to the ferrous sulfate. Analysis of the effect of the ferrous sulfate, iron (II,III) oxide nanopowder, hydrogen peroxide and the pH of the solution on the treatment efficiency showed that the process was optimised. The use of iron oxide nanopowder increased the efficiency of dye decomposition.
PL
Celem badań było określenie efektywności rozkładu barwnika azowego C.I. Direct Yellow 86 metodą Fentona przy udziale nanocząstek tlenków żelaza i porównanie jej z efktywnością klasycznej metody Fentona. Roztwory wodne barwnika oczyszczano metodą klasyczną stosując siarczan żelazawy oraz metodą zmodyfikowaną stosując siarczan żelazawy z dodatkiem nanocząstek tlenków żelaza (II,III). Dokonano optymalizacji procesu oczyszczania badając wpływ dawek siarczanu żelazawego i nanocząstek tlenków żelaza (II,III), dawki nadtlenku wodoru oraz pH roztworu na efektywność obróbki. Zastosowanie dodatku nanocząstek tlenków żelaza w zmodyfikowanym procesie klasycznym przebiegającym z udziałem siarczanu żelazawego zwiększało wydajność rozkładu barwnika.
EN
A study of azo dye/liquid crystal mixtures in monolayers formed at air-water (Langmuir films) and air-solid substrate (Langmuir-Blodgett films) interfaces was performed. Three azo dyes with various molecular structure and two liquid crystal materials: 4-octyl-4'-cyanobiphenyl (8CB) and trans-4-octyl(4'-cyanophenyl)-cyclohexane (8PCH) were used. The morphology of Langmuir films was monitored by means of a Brewster angle microscope (BAM). Moreover, a surface pressure and electronic absorption spectra of the monolayer spread on the water surface of dye/liquid crystal mixtures as a function of a mean molecular area were simultaneously recorded. In addition, the absorption for Langmuir-Blodgett films deposited on quartz plates was measured. Information about intermolecular interactions in the mixtures of the nonamphiphilic dye and the liquid crystal with polar terminal group was obtained. Conclusions about the formation of self-aggregates between dye molecules have been drawn. The influence of the dye molecular structure and its concentration on aggregates' geometry was found.
EN
The presented studies have focused on the influence of TiO2 properties, such as crystalline phase, crystallite size and surface area, on the effectiveness of degradation of azo dyes in water under UV irradiation. Two monoazo dyes: Acid Red 18 (AR18, C20H11N2Na3O10S3) and Acid Yellow 36 (AY36, C18H14N3NaO3S), and one polyazo dye Direct Green 99 (DG99, C44H28N12Na4O14S4) were applied as model compounds. The photocatalysts were prepared from a crude titanium dioxide obtained directly from the production line (sulfate technology) at the Chemical Factory "Police" (Poland). The crude TiO2 was calcinated in air for 1-4h at the temperatures ranging from 600 to 800°C. The BET specific surface area of TiO2 decreased gradually with increasing the calcination temperature. The crude TiO2 exhibited specific surface area of 277 m2/g. In case of the catalysts heated at 600, 700 and 800°C the BET surface area amounted to 62.3-53.3, 33.4-26.8 and 8.9-8.3 m2/g, for the calcination time of 1-4h, respectively. The crystallite size of anatase increased with increasing heat treatment temperature and ranged from 19 to 53 nm, for the temperatures of 600-800°C, respectively. The catalysts annealed at 600 and 700°C contained primarily anatase phase (94-97%), whereas the photocatalysts heated at 800°C were composed mainly of rutile (97-99%). The highest effectiveness of azo dyes degradation was obtained in case of the photocatalyst calcinated for 1h at 700°C. The photocatalyst was composed mainly of anatase (97%) with crystallite size of 27 nm. The most effectively photodegraded was AR18, having the molecular weight of 640.4 g/mol. The most difficult to degrade was AY36 exhibiting the lowest molecular weight from all the dyes used (375.4 g/mol).
13
Content available Dye decomposition on P25 with enhanced adsorptivity
EN
The preparation method and the activity of the TiO2-P25/N doped photocatalyst based on commercial titanium dioxide (TiO2 AeroxideŽ P-25 Degussa, Germany) are presented. For the TiO2-P25/N preparation TiO2-P25 and gaseous ammonia were kept in a pressure reactor (10 bars) for 4 hours at the temperature of 200°C. This modification process changed the chemical structure of the TiO2 surface. The formation of NH4+ groups was confirmed by the FTIR measurements. Two bands in the range of ca. 1430 - 1440 cm-1 attributed to bending vibrations of NH4+ could be observed on the FTIR spectra of the catalysts modified with ammonia and the band attributed to the hydroxyl groups at 3300 - 3500 cm-1, which were not reduced after N-doping. The photocatalytic activity of the photocatalysts was checked through the decomposition of two dyes under visible light irradiation. The modified TiO2 thus prepared samples were more active than TiO2-P25 for the decomposition of dyes under visible light irradiation.
EN
Application of hydrogen peroxide and ozone was investigated for degradation of azo dye Direct Black 22 in water solutions in concentration of 100 mg/dm3. Hydrogen peroxide was applied in the presence of ferrous ions in concentration of 5 mg/dm3 with 2.5 mg H2O2 per mg dye at pH = 3 and 40°C in a batch reactor. High degree of decolorization α > 98% was obtained under the optimal reaction conditions. Ozone was used in the barbotage reactor with a constant volume of solutions investigated at a continuous flow of 15 dm3/h ozone-oxygen mixture with 44 mg/dm3O3. Ozonation caused a nearly complete decolorization of dye α > 99.5% during 7 minutes of ozonation at ozone dose of 55 mg O3/dm3. The impact of dye solutions before and after oxidation by H2O2 and O3 on the activated sludge was investigated with the use of a special program EN ISO 8192. The program included inhibition I = (R(B)-R(T))/R(B) (R(B) and R(T) - the rates of oxygen consumption of blank and controlled samples). In the case of the investigated dye solutions, if the inhibition (I) had values significantly higher than 0.1 or lower than 0.1, the dye harmfully or advantageously influenced the activated sludge. Raw dye solution had inhibition I value < 0.1 and no negative effect on the activated sludge was recorded. Some positive impact appeared as a result of pre-oxidation by hydrogen peroxide because I values decreased, which had a positive stimulating effect. The ozonation had an increasing inhibition effect.
EN
Using a two-wave mixing technique supplemented by the illumination of the second laser, we studied the dynamics of the photoinduced anisotropy in polyimide free-standing films doped by azo-dyes containing one or two N=N bonds.We have measured the characteristics of grating recording using a He-Ne laser source (_ = 632.8 nm) under influence of light coming from a cw YAG laser doubled in frequency (_ = 532 nm). The experiments in polyimide-Disperse Red 1 (4-[N-ethyl-N-(2-hydroxyethyl)]amino-4_-nitro-azobenzene) system revealed complex kinetics of photoinduced birefringence leading to grating recording and light self-diffraction. The two main processes were identified during the grating build-up in this high Tg polymer matrix. Preliminary results on possibility of dynamic color and polarization holographic recording in polyimide containing newly synthesized molecule having two N=N bonds 1,3 diamino-4-azo(4_-nitroazobenzene)benzene are also presented.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.