Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  axisymmetric bending
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper is devoted to an axisymmetric bending problem of a generalized circular sandwich plate with continuous variation of mechanical properties in the thickness direction of the core. The plate is clamped and carries a concentrated force in its center. The improved shear deformation theory of the normal straight line to the neutral surface is elaborated. The deformation of this normal straight line is graphically presented for the exemplary sandwich structures of the plate. Two differential equation of equilibrium of the plate are obtained based on the principle of stationary potential energy. This system of equations is analytically solved and the maximum deflection of the example plates are derived. Moreover, the deformation of the normal strain line and the maximum deflection of the plate are calculated numerically (FEM). Results of these calculations are compared.
EN
Axisymmetric bending analysis of graphene platelet (GPL) sandwich annular and circular nanoplates with FG porous core and integrated with sensor and actuator resting on an elastic substrate under various boundary conditions is presented in this article. The present nanocomposite model is subjected to mechanical load and an external voltage. The upper and lower sandwich layers are made of aluminum matrix with GPL reinforcement. The effective material properties of the sandwich face layers are estimated in the framework of Halpin–Tsai scheme. In accordance with a refined four-variable theory considering the transverse shear and normal strains, the motion equations are obtained from principle of the virtual work. The size effects are considered by employing the nonlocal strain gradient theory. The differential quadrature method is utilized here to solve the governing equations. First, the obtained results are validated by implementing some comparisons with previous work. Then a comprehensive illustration is executed to show the impacts of boundary conditions, GPLs weight fraction, geometrical dimensions, elastic foundation parameters and applied voltage on the bending of the sandwich nanoplates with FG-porous core and piezoelectric layers.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.