Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  avalanche photodiode
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The performance of long-wave infrared (LWIR) x = 0.22 HgCdTe avalanche photodiodes (APDs) was presented. The dark currentvoltage characteristics at temperatures 200 K, 230 K, and 300 K were measured and numerically simulated. Theoretical modeling was performed by the numerical Apsys platform (Crosslight). The effects of the tunneling currents and impact ionization in HgCdTe APDs were calculated. Dark currents exhibit peculiar features which were observed experimentally. The proper agreement between the theoretical and experimental characteristics allowed the determination that the material parameters of the absorber were reached. The effect of the multiplication layer profile on the detector characteristics was observed but was found to be insignificant.
EN
This paper investigates the noise levels present at various points in the FOSREM type fiber optic seismograph. The main aim of this research was to discover magnitudes of noise, introduced by various components of the analog and optical circuits of the device. First, the noise present in the electronic circuit without any optics connected is measured. Further experiments show noise levels including the detector diode not illuminated and illuminated. Additional tests were carried out to prove the necessity of analog circuitry shielding. All measurements were repeated using three powering scenarios which investigated the influence of power supply selection on noise. The results show that the electronic components provide a sufficient margin for the use of an even more precise detector diode. The total noise density of the whole device is lower than 4⋅10⁻⁷ rad/(s√Hz). The use of a dedicated Insulating Power Converter as a power supply shows possible advantages, but further experiments should be conducted to provide explicit thermic confirmation of these gains.
EN
In this paper calculation of some physical parameters of the receiver of laser scanning system is presented. Basic physical principles of laser scanning of water objects are considered. Ranging standard deviation for typical parameters of laser scanning system are calculated. Formula for calculation of reflected optical power for specular reflective objects is proposed.
EN
Avalanche photodiodes (APDs) operating at 1.55 μm wavelength are used in many different applications. Therefore, specialized devices with modified electrical characteristics are often strongly needed. In order to design and produce such structures, advanced modeling techniques and computer aided design (CAD) software are utilized. In the paper, modeling results of avalanche photodiodes with separated regions of absorption, grading, charge and multiplication (SAGCM) are presented. Simulations of diode structures were performed using APSYS software developed by Crosslight. Extensive calculations allowed for the detailed analysis of individual regions of the device and the determination of their influence on diode characteristics. Simulations showed a pronounced influence of the charge region on characteristics and performance of the device. Changes of the doping level of this layer exhibited strong modification in the band-to-band tunneling effect. Simultaneously it influenced the characteristics related to the Zener effect and carrier transport.
5
Content available remote Investigation and analysis of time response in Geiger mode avalanche photodiode
EN
Statistical properties of the impulse response of avalanche photodiode (APDs) are determined. The model is based on recurrence equations. These equations are solved numerically to calculate the mean current impulse response and standard deviation as a function of time. In this paper, we investigate the effects of parameters such as ionization coefficient-multiplication thickness product (?w), dead space, excess noise factor, mole fraction, temperature on the mean current impulse response of APD in the Geiger mode.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.