Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  auxetic materials
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Dokonano przeglądu literatury pod kątem badań materiałów auksetycznych, które posiadają ujemny współczynnik Poisson’a (NPR) charakteryzujący odpowiedź materiału na naprężenie jednoosiowe. Struktury i materiały auksetyczne zachowują się sprzecznie z intuicją, tzn. przy jednoosiowym rozciąganiu, rozszerzają się poprzecznie, co wynika z ich skomplikowanych struktur geometrycznych. Opisano reprezentatywne modele strukturalne (re-entrant, struktury składające się z tzw. sztywnych lub półsztywnych obracających się jednostek , struktury chiralne, przędze auksetyczne i struktury włókienkowo-zgrubieniowe) oraz zastosowanie materiałów auksetycznych wynikające z ich właściwości. Właściwości materiałów auksetycznych, np. synklastyczna krzywizna zginania, zmienna przepuszczalność, zwiększona odporność na wgniecenia, wysoka odporność na pękanie oraz tłumienie i pochłanianie dźwięku stwarzają szerokie możliwości ich zastosowania, m.in. w materiałach biomedycznych, materiałach amortyzujących, urządzeniach do pozyskiwania energii, wyposażeniu sportowym, filtrach, robotyce, tekstyliach czy materiałach stosowanych w przemyśle lotniczym oraz budownictwie.
EN
The literature was reviewed in terms of research on auxetic materials with a negative Poisson's ratio (NPR) characterizing the material's response to uniaxial stress. Auxetic structures and materials behave counter-intuitively, i.e. when stretched uniaxially, they expand laterally due to their complex geometric structures. Representative structural models are described (re-entrant, structures consisting of so-called rigid or semi-rigid rotating units, chiral structures, auxetic yarns and fibril - noudle structures) and the use of auxetic materials resulting from their properties. Properties of auxetic materials, e.g. synclastic bending curvature, variable permeability, high shear stiffness, increased resistance to indentation, high resistance to cracking and sound attenuation and absorption create a wide range of applications, including in biomedical materials, shock-absorbing materials, energy generation devices, sports equipment, filters, robotics, textiles or materials used in the aerospace industry and construction.
EN
The aim of the presented work was to study the auxetic textiles covered with titanium silicide coating. The research was carried out to develop the material structure, which will be used for protective clothing, e.g. for firemen. The new material should be characterized by increased heat resistance coupled with protection against gas pressure impact caused e.g. by gas installation damage. In the paper, an assessment of the change in heat resistance properties of a Ti-Si coated auxetic textile loaded with gas pressure impulse was carried out.
4
Content available Production and study of polyether auxetic foam
EN
The article describes the experiment consisting in production and study of auxetic open-cell polyether foam. In the introduction I briefly explain what auxetic materials are and list their main properties together with possible application areas. Next, detailed information about the background of the experiment is given: important material characteristics and extensive description of the procedure. Further, discussion of the results is presented, basing on microscopic imagery of the obtained auxetic foam. The article describes also tensile tests performed on the produced material and cites quantitative results in the form of text and graphs illustrating the Poisson ratio dependence on deformation, as well as stress-strain relations (true and engineering values). In the final part of the article conclusions are enclosed.
PL
Artykuł opisuje eksperyment polegający na laboratoryjnym wytworzeniu i badaniu właściwości auksetycznej otwarokomórkowej pianki polieterowej. We wstępie krótko opisane jest, czym są materiały auksetyczne, podane są ich najważniejsze własności oraz możliwe obszary zastosowań. Następnie przedstawione są szczegółowo informacje o samym eksperymencie: scharakteryzowano użyty materiał i przedstawiono sposób wytworzenia pianki. W kolejnej części artykułu znajdują się mikroskopowe obrazy struktury pianki wraz z komentarzem dotyczącym mechanizmów deformacji. Opisany jest także test na rozciąganie otrzymanej pianki auksetycznej; wyniki opatrzone są komentarzem oraz wykresami. Wykresy ilustrują zależności współczynnika Poissona od odkształcenia oraz relację naprężeń i odkształceń (inżynierskich oraz rzeczywistych). W ostatniej części zamieszczono uwagi podsumowujące.
EN
Purpose: The wear resistance and friction reducing properties of polymer fibres can be improved with negative Poisson's ratio behaviour. Poisson's ratio is defined as the ratio of transverse contraction strain to longitudinal extension strain in the direction of stretching force. Large number of materials have positive Poisson's ratio, however there are some materials which exhibit negative Poisson's ratio, they are termed auxetic materials. Auxetic materials present unique property that they expand in all directions when they are stretched and contract when compressed. This paper has highlighted, compared and discussed the variation between the modelling, theoretical and practical differences of auxetic materials wear behaviour. Design/methodology/approach: For the purpose of this work, auxetic and conventional fibres were produced by the melt spinning mechanism using extruder. The fibres physical properties were evaluated such as Poisson's ratio, fibre count, elongation, force and tenacity. Mono-filament fibres were used for fabrication of weft knitted fabrics; plain (1x1) structure was employed for knitting fabric. The wear resistance of the knitted fabrics were tested by using Nu-Martindale Abrasion and Pilling Tester and comparison were made. Findings: The abrasive wear test results demonstrated that the auxetic based weft knitted fabrics have superior wear behaviour than the conventional fibre based weft knitted fabrics. Practical implications: The experiment showed that the auxetic material is capable of sustaining large amount of abrasion compared to conventional fabric. Originality/value: The paper compare and discusse the variation between the modelling, theoretical and practical differences of auxetic materials wear behaviour.
6
Content available remote Molecular auxetics
7
Content available remote The use of auxetic materials in smart structures
EN
This paper presents a study of the implications of using auxetic materials in the design of smart structures. By using auxetic materials as core and piezoelectric actuators as face layers to provide control forces, the problem of the shape control of sandwich beams is analyzed under loading conditions. The mechanical model is based on the shear deformable theory for beams and the linear theory of piezoelectricity. The numerical solution of the model is based on superconvergent (locking-free) finite elements for the beam theory, using Hamilton's principle. The optimal voltages of the piezo-actuators for shape control of a cantilever beams with classical and auxetic material are determined by using a genetic optimization procedure. Related numerical solutions of static problems demonstrate the role of auxetic material in the deformation, shape control and stress distribution of the beam and related two-dimensional composite elastic structures.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.