Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  autonomous wireless sensor networks
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przedstawiono układ koprocesora kryptograficznego dostosowanego do specyfiki autonomicznych bezprzewodowych sieci czujnikowych. Układ taki z założenia ma wspomagać realizację różnych algorytmów kryptografii klucza publicznego bazujących na arytmetyce modularnej. Koprocesor opisany w postaci modeli GEZEL i VHDL może w prosty sposób zostać zrealizowany w postaci układu ASIC lub uruchomiony na niskomocowym układzie FPGA.
EN
The concept of autonomous wireless sensor networks involves energy harvesting, as well as effective management of system resources. Public-key cryptography (PKC) offers the advantage of elegant key agreement schemes with which a secret key can be securely established over unsecure channels. In addition to solving the key management problem, the other major application of PKC is digital signatures, with which non-repudiation of messages exchan-ges can be achieved. The motivation for studying a low-power and area efficient modular arithmetic algorithm comes from enabling public-key security for low-power devices that can perform under constrained environment like autonomous wireless sensor networks. This paper presents a cryptographic coprocessor tailored to the autonomous wireless sensor network constraints. Such a system is aimed at supporting the implementation of different public-key cryptosystems based on modular arithmetic in GF(p). The coprocessor key components are described as GEZEL models and can be easily transferred to VHDL and implemented in hardware.
PL
W artykule przedstawiono układ generatora liczb pseudolosowych dostosowany do specyfiki autonomicznych bezprzewodowych sieci czujnikowych. Realizacja podstawowych usług kryptograficznych wymaga dostarczenia liczb losowych, jednak ze względu na asymetrię zasobów (ograniczona moc zasilania i zasoby po stronie czujnikowej) konieczny jest dobór algorytmów i optymalizacja implementacji sprzętowej według kryterium mocy rozpraszanej.
EN
The paper presents a pseudo-random number generator circuit tailored to the specific properties of autonomous wireless sensor networks [1, 2]. Implementation of essential cryptographic services, like zero-knowledge proof entity authentication [3], requires delivery of random numbers. The concept of autonomous wireless sensor networks involves energy consumption from the environment, as well as efficient management of system resources. Due to the asymmetry of resources (insufficient power and computing resources on the sensor side) careful selection of the algorithm and low-power implementation of the random number generator are required. Therefore we chose to implement the BBS algorithm (Blum-Blum-Shub generator) whose security is based on the integer factorization problem and whose operation is based on modular multiplication. In order to reduce power dissipation, we decided to implement the Montgomery modular multiplication algorithm in a bit-serial fashion. Due to the proposed modifications on algorithm and architecture level, the generator is suitable for use in constrained environments like autonomous wireless sensor networks. The power consumption is only 141 žW for an Actel Igloo low-power FPGA AGLN250V2 device operating at 100 kHz (1024 bit operands). Słowa kluczowe: autonomiczne bezprzewodowe sieci czujnikowe, generatory liczb losowych, arytmetyka modularna
PL
W artykule przedstawiono metody pozyskiwania energii dla autonomicznych bezprzewodowych sieci czujnikowych. Pozyskiwanie energii w takich systemach odbywa się za pomocą dedykowanych układów, w niektórych przypadkach źródłem energii może być sam obiekt pomiarowy. Źródła energii odpowiednie dla ww. zastosowań możemy przyporządkować do jednej z kategorii: ruch i wibracje, różnica temperatur, promieniowanie świetlne i fale radiowe.
EN
The paper presents energy harvesting methods suitable for autonomous wireless sensor networks. The average power demand of a typical sensor is between 20-100 žW [1]. In such systems energy is harvested via dedicated circuits. In some cases a measured object can be an energy source. Energy sources adequate for the abovementioned applications can be assigned to one of the categories: movement and vibration, temperature differences, light radiation, radio-frequency waves [1, 2, 3]. An analysis of available solutions in terms of power density or dimensions of power harvesting circuit is required for each energy source. Another important issue is the energy source power characteristic and whether it is controllable. If harvested energy is not stored (battery), a key parameter becomes the average power. In the paper we take a close look at energy harvesting approaches, along with the underlying physics and the power output. The achievable power ranges from 0,1 žW/cm2 to 15 mW/cm2 (depending on the size of the energy harvesting unit). The highest power can be achieved with photovoltaic cells under direct exposure to the sunlight.
PL
W artykule przedstawiono właściwości sygnałów chaotycznych specyficznych do zastosowań w kryptograficznie bezpiecznej komunikacji bezprzewodowej dla rozproszonych systemów pomiarowo-sterujących, w szczególności bezprzewodowych sieci czujnikowych. Przeanalizowano zjawisko synchronizacji dwóch układów chaotycznych. Zaprezentowano analizę symulacyjną modeli generatorów sygnałów chaotycznych bazujących na nieliniowych układach dynamicznych, popartą wynikami eksperymentalnymi.
EN
This paper presents specific properties of chaotic signals applicable to cryptographically secure wireless communications. Chaotic signals have characteristics that significantly distinguish them from signals commonly used in wireless distributed measurement and control systems. The most important feature of the chaotic signal is its exponential sensitivity to initial conditions. Due to the finite measurement accuracy it is very difficult to predict the signal value after a certain time from the execution of the measurement. Moreover, it is very difficult to determine prior values of the signal having particular measurement result. Different characteristics of this type of electrical signals result in a number of potential ad-vantages which are as follows: low probability of transmission detection (capture), possibility of using occupied bandwidth, resilience to errors caused by multipath propagation, lower transmission power, possibility of coherent transmission and communication privacy. The paper deals with an analysis of the phenomenon of synchronization of two chaotic systems. The ob-tained simulation and experimental results of different chaotic signal generator models using nonlinear dynamical circuits are presented and discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.