W artykule opisano wybrane procedury komputerowego modelowania stacjonarnych sygnałów losowych o rozkładach normalnych i określonych kształtach funkcji autokorelacji. W drugiej części pracy przedstawiono przykłady analizy sygnałów z elektronicznych generatorów szumów, które mają pasma częstotliwościowe 25 kHz i 100 kHz. Celem pracy jest potrzeba wygenerowania przebiegów o zadanych charakterystykach statystycznych. Sygnały te wykorzystywane są przez autora w badaniach aplikacji metod warunkowego uśredniania sygnałów w technice pomiarowej.
EN
The paper describes selected procedures for computer modeling of stationary random signals with normal distributions and specific shapes of the autocorrelation function. In the second part of the work, examples of signal analysis from electronic noise generators that have frequency bands of 25 kHz and 100 kHz are presented. The aim of the work is the need to generate waveforms with given statistical characteristics. These signals are used by the author in the research of the application of methods of conditional signal averaging in the measurement technique.
The article presents new tools for investigating the statistical properties of the harmonic signal autocorrelation function (ACF). These tools enable identification of the ACF estimator errors in measurements in which the triggering of the measurements is non-synchronized. This is important because in many measurement situations the initial phase of the measured signal is random. The developed tools enable testing the ACF estimator of a harmonic signal in the presence of Gaussian noise. These are the formulas on the basis of which the statistical properties of the estimator can be determined, including the bias, the variance and the mean squared error (MSE). For comparison, the article also presents the ACF statistical analysis tools used in the conditions of synchronized measurement triggering, known from the literature. Operation of the new tools is verified by simulation and experimental studies. The conducted research shows that differences between the MSE results obtained with the use of the developed formulas and those attained from simulations and experimental tests are not greater than 1 dB.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W artykule zwrócono uwagę na potrzeby badawcze w określeniu przydatnych teoretycznie i praktycznie modeli sygnałów stochastycznych. Przedstawiono modele teoretyczne mało przydatne praktycznie: szum biały i szum biały po przejściu przez układ inercyjny. Opisano modele teoretyczne szumów dolnopasmowych przydatne praktycznie. Podano przykładowe charakterystyki teoretyczne i eksperymentalne szumów.
EN
The article brings to attention the research needs in determining theoretically and practically useful models of stochastic signals. It presents theoretical models of little practical use: white noise and white noise after passing through an inertial system. Practically useful theoretical models of low-band noises were described. Examples of theoretical and experimental characteristics of noises were provided.
This paper presents a new simple and accurate frequency estimator of a sinusoidal signal based on the signal autocorrelation function (ACF). Such an estimator was termed as the reformed covariance for half-length autocorrelation (RC-HLA). The designed estimator was compared with frequency estimators well-known from the literature, such as the modified covariance for half-length autocorrelation (MC-HLA), reformed Pisarenko harmonic decomposition for half-length autocorrelation (RPHD-HLA), modified Pisarenko harmonic decomposition for half-length autocorrelation (MPHD-HLA), zero-crossing (ZC), and iterative interpolated DFT (IpDFT-IR) estimators. We determined the samples of the ACF of a sinusoidal signal disturbed by Gaussian noise (simulations studies) and the samples of the ACF of a sinusoidal voltage (experimental studies), calculated estimators based on the obtained samples, and computed the mean squared error (MSE) to compare the estimators. The errors were juxtaposed with the Cramér-Rao lower bound (CRLB). The research results have shown that the proposed estimator is one of the most accurate, especially for SNR>25dB. Then the RC-HLA estimator errors are comparable to the MPHD-HLA estimator errors. However, the biggest advantage of the developed estimator is the ability to quickly and accurately determine the frequency based on samples collected from no more than five signal periods. In this case, the RC-HLA estimator is the most accurate of the estimators tested.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The development of temperature forecasting models for the state of Kerala using Seasonal Autoregressive Integrated Moving Average (SARIMA) method is presented in this article. Mean maximum and mean minimum monthly temperature data, for a period of 47 years, from seven stations, are studied and applied to develop the model. It is expected that the time-series datasets of temperature to display seasonality (and hence non-stationary), and a possible trend (due to the fact that the data spans 5 decades). Hence, the key step in the development of the models is the determination of the non-stationarity of the temperature time-series, and the transformation of the non-stationary time-series into a stationary time-series. This is carried out using the Seasonal and Trend decomposition using Loess technique and Kwiatkowski–Phillips–Schmidt–Shin test. Before carrying out this process, several preliminary tests are conducted for (1) fnding and flling the missing values, (2) studying the characteristics of the data, and (3) investigating the presence of the trend and seasonality. The non-stationary temperature time-series are transformed to stationary temperature time-series, by one seasonal diferencing and one frstorder diferencing. This information, along with the original time-series, is further utilized to develop the models using the SARIMA method. The parsimonious and best-ft SARIMA models are developed for each of the fourteen variables. The study revealed that SARIMA(2, 1, 1)(1, 1, 1)12 as the ideal forecasting model for eight out of the fourteen time-series datasets.
W artykule przedstawiono analizę przydatności funkcji autokorelacji do określenia charakteru drgań mechanicznych. W badanym stanowisku wykorzystano silnik z masą wirującą, do której istnieje możliwość dołożenia masy niewyważenia (w zakresie 4,9 g … 14,9 g) powodującej dodatkowe wymuszające drgania układu. Do rejestracji przemieszczeń w ruchu drgającym wykorzystano trzy czujniki typu 801s. W opracowaniu uwzględniono drgania silnika z masą wirującą w czterech wariantach zamontowania silnika na masywnej podstawie. Uzyskane przebiegi, ze względu na nieskalibrowanie czujników, nie pozwalają na przeprowadzenie ilościowej analizy drgań. Można natomiast określić jakościowo, w którym z czterech przypadków drgania są najmniejsze i jak przebiega ich proces tłumienia. Do określenia charakteru drgań, autorzy proponują wykorzystać funkcje autokorelacji. W artykule przedstawiono wyniki dla masy niewyważenia 14,9 g, określając kiedy drgania mają charakter losowy, a kiedy okresowy.
EN
The article presents an analysis of the usefulness of the autocorrelation function in determining the characteristics of mechanical vibrations, mainly for didactic purposes. The analysed station uses an engine with a rotating mass (a flywheel installed on a motor shaft) to which a mass of unbalance (between 4.9 g and 14.9 g) can be added (on a radius of R=35 mm), which causes additional driving oscillation of the system. Used as identifiers of displacement in vibrating motion were three 801S sensors with an analog output, connected to a NI USB-6009 measurement and data-logging device. The study features measurements of engine vibrations with a rotating mass for four variations of the installation of the engine to the base: directly (no damping), through spring dampers, through rubber dampers, through a system of rubber and spring dampers The measured characteristics – functions of displacement in time – due to uncalibrated sensors, do not enable quantitative analysis of the vibrations. However, it can be qualitatively determined, in which of the cases the vibrations are smallest and how their damping process takes place. This is done through comparison of displacement amplitudes. Because the achieved characteristics do not allow the identification of the nature of the vibrations, the authors propose the use of autocorrelation function for this purpose. The study presents an analysis of results measured for the mass of unbalance of 14.9 g and specifies which variations of engine installation result in random vibrations and which in periodic vibrations.
W artykule opisano wyniki analiz, których celem było uzyskanie informacji o wybranych parametrach składowej deterministycznej sygnału będącego sumą dwóch komponentów – sinusoidalnego tłumionego wykładniczo oraz stochastycznego.
EN
The paper describes the results of analyzes aimed at obtaining information on selected parameters of the deterministic component of the signal being the sum of two waveforms - sinusoidal dampened exponentially and the white noise pattern. The results obtained were compared with the fact that the criterion used was the amount of deviation from the known parameters of the analyzed signals.
8
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Artykuł dotyczy problematyki wyznaczania niepewności estymacji funkcji autokorelacji sygnału sinusoidalnego w warunkach konwersji a-c z sygnałem ditherowym. W pracy przedstawiono porównanie wyników badań różnych metod, analitycznej oraz symulacyjnej Monte Carlo. Przeprowadzone badania wskazują na przydatność stosowania metody Monte Carlo do oceny niepewności funkcji autokorelacji. Dodatkowo wykazano, że sygnał ditherowy najlepiej stosować zarówno dla małej wartości liczby próbek sygnału, jak i małej liczby bitów przetwornika a-c.
EN
The article discuss the problem of determining the uncertainty of autocorrelation function estimation for sinusoidal signal a-d converted with dither. The paper presents a comparison of test results for two techniques: the analytical method and Monte Carlo simulation. The results show that Monte Carlo method can be successfully applied to determine the autocorrelation function uncertainty. In addition, there were shown that use dither signal provides better results when applied to signals with small number of samples and a-d converter resolution limited do small number of bits.
9
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this study, a new detection algorithm for yarn-dyed fabric defect based on autocorrelation function and grey level co-occurrence matrix (GLCM) is put forward. First, autocorrelation function is used to determine the pattern period of yarn-dyed fabric and according to this, the size of detection window can be obtained. Second, GLCMs are calculated with the specified parameters to characterise the original image. Third, Euclidean distances of GLCMs between being detected images and template image, which is selected from the defect-free fabric, are computed and then the threshold value is given to realise the defect detection. Experimental results show that the algorithm proposed in this study can achieve accurate detection of common defects of yarn-dyed fabric, such as the wrong weft, weft crackiness, stretched warp, oil stain and holes.
The present study was conducted in the lobbies of 16 Taiwanese urban hospitals to establish what contributes to the degree of noisiness experienced by patients and those accompanying them. Noise level measurements were then conducted by 15 min equivalent sound pressure levels (LAeq, 15m, dB) during daytime hours. The average LAeq itself was found to be poorly related to perceived noisiness. Levels variations were better correlated, more continual noise may actually be perceived as noisier. According to the findings of a multiple linear stepwise regression model (r = 0.91, R2 = 0.83), the 3 independent variables shown to have the largest effects on perceived noisiness were 1) 1/(L5−L95), 2) effective duration of the normalized autocorrelation function (_e, h), of all LAeq, 15m over 9–17, and 3) percentile loudness, N5, 15m. These results resemble previous studies that had assumed that a larger fluctuation of noise level corresponds to less annoyance experienced for mixed traffic noise studied in a laboratory situation. As an advanced approach, for hospital noise that consisted of 12 audible noise events, subjective noisiness were evaluated by the noise time structure analyzed by autocorrelation with loudness and levels variation.
W artykule przedstawiono wyniki badania własności wybranej charakterystyki sygnału sinusoidalnego wyznaczanej na podstawie możliwie najmniejszej liczby próbek sygnału. Do badań zastosowano funkcję autokorelacji sygnału. Pokazano, że do wyznaczania wartości funkcji autokorelacji wystarczy sześć próbek sygnału oraz, że podczas obliczania wartości funkcji autokorelacji odpowiedni dobór parametrów sygnału powoduje wyeliminowanie skutków operacji kwantowania.
EN
This paper presents the results of a research of the selected sinusoidal signal characteristic obtained from the smallest possible number of the signal samples. Research was carried out using the autocorrelation function. It was shown that the values of the autocorrelation function can be determined on the basis of six signal samples. It was also shown that the appropriate selection of the signal parameters eliminates the effects of quantization. Chapter 1 provides basic information on the reasons for study of the autocorrelation function properties. In Chapter 2 the results of the theoretical study were presented. Th. 1 deals with the determination of the sinusoidal signal autocorrelation function and her estimator, when M >> 1, where M is the number of samples. Eq. (1) describes the relation between the number of samples and the delay times of the autocorrelation function. Eq. (3) presents the autocorrelation function estimator. In the second Theorem, it has been shown that, to determine the autocorrelation function values can be used only six sinusoidal signal samples. In the next part of Chapter 2 the third Theorem has been presented. It has been shown that if the initial phase of the signal is equal to (...)/2, then the effects of quantization are eliminated. In Chapter 3 the results of the experimental research were presented. Eq. (22) and (23) describes the mean of the mean square estimator obtained on the basis the autocorrelation function. In Fig. 1 the eq. (22) and (23) have been shown.
12
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper concerns issues of probabilistic properties of the sinusoidal signal autocorrelation function. An autocorrelation function can be viewed as a random variable with fixed probability density. In the paper, results of the research on parameters of such a variable are presented. On the basis of the probability density function, the mean, the mean-square and the variance of the random variable have been determined.
PL
Artykuł dotyczy problematyki probabilistycznych własności funkcji autokorelacji sygnału sinusoidalnego. Funkcja autokorelacji może być rozpatrywana jako zmienna losowa o ustalonej gęstości prawdopodobieństwa. W artykule przedstawiono wyniki badań dotyczące parametrów takiej zmiennej losowej. Na podstawie funkcji gęstości wyznaczono wartość oczekiwaną, średniokwadratową i wariancję zmiennej losowej.
13
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the paper, it is shown that at a given moment of time the actual values of the sinusoidal signal autocorrelation function can be determined in an unambiguous way on the basis of three samples of the signal and three samples of its time-shifted copy. Based on this, an algorithm making it possible to determine an autocorrelogram has been devised. The employment of the devised algorithm substantially reduces the time consumption of determining an autocorrelogram.
PL
W artykule pokazano, że w ustalonej chwili czasowej rzeczywiste wartość funkcji autokorelacji sygnału sinusoidalnego można wyznaczyć w sposób jednoznaczny na podstawie trzech próbek sygnału i trzech próbek jego własnej, przesuniętej w czasie kopii. Na tej podstawie opracowano algorytm umożliwiający wyznaczanie autokorelogramu.
Funkcja autokorelacji stanowi uznane narzędzie analizy własności sygnałów. Artykuł dotyczy problematyki szacowania funkcji autokorelacji sygnału sinusoidalnego metodą Monte Carlo. Jedną z najczęstszych aplikacji metody Monte Carlo jest całkowanie numeryczne funkcji. Ponieważ składową funkcji autokorelacji jest operacja całkowania, to taką metodę można zastosować do szacowania funkcji autokorelacji.
EN
This paper deals with properties of the autocorrelation function of a sinusoidal signal. The Monte Carlo method was proposed for estimation of the autocorrelation function. The results showed that although the Monte Carlo method did not give the results of high accuracy, it provided the reliable autocorrelation function ratings. Section 1 presents basic information concerning the autocorrelation function. Eq. (3) describes the autocorrelation function of a sinusoidal signal. In Section 2 the Hit or Miss Monte Carlo method is presented. Such a method is applicable to a numerical integration task. Eqs. (6)-(9) describe the estimation of the integral (4). Eq. (10) gives the error of integral estimation. The Monte Carlo method was adapted to estimate the autocorrelation function of a sinusoidal signal. Eq. (13) describes the integration function and Eq. (14) gives its derivative, which was used to determine the integration ranges. The ends of these ranges are given by Eq. (19). In Fig. 1 the function to be integrated together with its integration domain and the range of the function values is shown. In the next part of the paper Eq. (20) describing the estimation error of the autocorrelation function and the sample results of estimation of the autocorrelation function with use of the Monte Carlo method are given. Section 3 contains the conclusions.
W pracy przedstawiono zastosowanie warunkowego uśredniania sygnału stochastycznego do wyznaczania interwału korelacji. Dla wybranych modeli sygnałów porównano wyniki badań teoretycznych i eksperymentalnych.
EN
The article presents the application of conditional averaging of stochastic signals to determination of correlation interval. For chosen models of signals the results of theoretical analysis are compared with results of experiments. The paper is divided into five sections. The first is a short introduction to the subject of the paper. Section 2 presents the definition and some examples of correlation intervals for typical form of autocorrelation functions (Fig. 1, Tab.1). Section 3 describes the use of conditional mean value to determination of correlation interval (Eq. 9) and statistical errors of estimation for this method (Eq. 10, Eq. 13). The results of experiments for random signals with Gaussian probability distribution and two typical form of autocorrelation function (Fig. 4) are given in Section 4. Section 5 summarizes the results and presents final remarks. The authors conclude that the method described in this paper may be applied to determination of correlation interval of stochastic signals, particularly for signals with non-oscillative form of autocorrelation function.
W pracy zaproponowano wykorzystanie interwału korelacji do wyznaczania standardowej niepewności średniej arytmetycznej szeregu danych dodatnio skorelowanych. Dla wykładniczego modelu skorelowania danych porównano sposób oceny wpływu skorelowania za pomocą interwału korelacji i wartości funkcji autokorelacji.
EN
Correlation interval (CI) is frequently used in stochastic signals analysis. In this work the CI application to determination of standard uncertainty of arithmetic mean for correlated data is proposed. The results of theoretical analysis for Gaussian distributed data with exponential form of autocorrelation functions are given. The paper is divided into five sections. The first is a short introduction to the subject of the paper. Section 2 presents the definition and determination of CI (Eq. 1, Eq. 2) and its application to evaluation of the standard uncertainty of the arithmetic mean (Eq. 11). Section 3 describes the use of correlation interval to determination of the standard uncertainty of the arithmetic mean for data with exponential form of autocorrelation function. The results of experiments for random signals with Gaussian probability distribution are given in Section 4. Section 5 summarizes the results and presents final remarks. The authors conclude that the method described in this paper may be applied to determination of standard uncertainty of arithmetic mean for Gaussian positively correlated data.
W artykule omówiono algorytmy modelowania wzajemnie opóźnionych stacjonarnych sygnałów stochastycznych o rozkładach normalnych i zadanych kształtach funkcji autokorelacji. Przedstawiono stanowisko laboratoryjne umożliwiające fizyczne generowanie takich przebiegów oraz analizę przetwarzanych sygnałów. Przedstawione modele sygnałów i stanowisko mogą znaleźć zastosowanie np. w badaniach statystycznych metod pomiaru opóźnienia oraz przyrządów pracujących w oparciu o te metody.
EN
Random signals are an important topic in DSP. They are often required to test the performance of algorithms that must work with stochastic signals or in the presence of noise. The paper presents algorithms for modeling of mutual delayed stationary random signals with given statistical parameters: Gaussian (normal) probability density, typically form of autocorrelation function (ACF) and specified signal-to-noise ratio (SNR). The paper is divided into five sections. The first is a short introduction to the subject of the paper. Section 2 presents the typical model of random signals (Eq. 1) obtained from two sensors in measurement of time delay (e.f. in two-phase flow evaluation). In section 3 the discrete model algorithms of signal with normal probability density function and specified ACF are presented (Eq. 2-4, Tab. 1, Fig. 1). The models can be applied to simulation of both: useful stochastic signal and distortion. Section 4 describes a laboratory stand for generation of voltage random signals based on models described above, and for acquisition and analysis of real signals obtained from sensors (Fig. 2,3). The laboratory stand consists of two generators, digital oscill-oscope and PC with DAQ NI-6143 simultaneous sampling card, GPIB card, and software. The control application is described in LabVIEW environment. Section 5 summarizes the results and presents final remarks. The authors conclude that the models of signals and laboratory stand may be applied to evaluation of statistical method and systems for time delay measurements of stochastic signals.
The paper deals with coded design of signals of remarkable correlation quality or minimizing of codes with respect to correlation function owing to the best spatially distributed impulses of coded signals. The method based on application of remarkable properties of particular combinatorial structures called "Gold Numerical Rings" (GNR)s, provided to simplify finding the optimal variants for synthesis of the signals is described. Method for coded design of the signals using GNRs, can be well applied in electronic engineering, control systems, telecommunications and radio-engineering.
PL
Referat dotyczy konstruowania sygnałów o dobrej jakości korelacyjnej lub kodów minimalizowanych według funkcji autokorelacji poprzez jak najlepsze rozmieszczenie kolejności impulsów kodowanych sygnałów w przestrzeni. Opisana metoda bazuje na szczególnych właściwościach pewnych rodzajów struktur kombinatorycznych, zwanych "Złotymi Pierścieniami Liczbowymi" (ZPL), pozwalających uprościć poszukiwanie optymalnych wariantów syntezy takich sygnałów. Metoda konstruowania sygnałów za pomocą ZPL może być z powodzeniem stosowana w energoelektronice, układach sterowania, telekomunikacji i radio-inżynierii.
Celem pracy jest wyznaczenie rzeczywistej wariancji wartości oczekiwanej skwantowanego sygnału i porównanie takiej wariancji z estymatorami tej wielkości obliczanymi metodą klasyczną oraz na podstawie funkcji autokorelacji. W pracy zdefiniowano postać estymatora wartości oczekiwanej sygnału. Na tej podstawie wyznaczono jego wariancję. Do badań zastosowano skwantowane próbki sygnału oraz momenty zmiennej losowej. Założono, że próbki sygnału zostały skwantowane w przetworniku analogowo-cyfrowym (A-C) typu zaokrąglającego o idealnej charakterystyce kwantowania. W charakterze przykładu przedstawiono wyniki obliczeń wariancji dla sygnału sinusoidalnego, sygnałów losowych o rozkładach: równomiernym oraz Gaussa.
EN
In the paper there is presented a way of determining the variance of the expected value estimator based on the signal autocorrelation function. The expected signal value estimator is defined and the estimator variance is determined. For investigations there were used quantized samples of signal and moments of random variable. There was assumed that the signal was sampled by an ideal AC round-off converter. As an example there are given the results of variance calculations for sinusoidal, Gaussian and uniform PDF (Probability Density Function) signals. The paper is divided into three paragraphs. Paragraph 1 comprises a brief introduction to the research problems. There is given a definition of the expected signal value estimator, calculated on the basis of quantized data (Eq. 2). There are defined the initial conditions allowing calculation of the estimator characteristics. In Paragraph 2 the variance (Eq. 3) of the estimator (Eq. 2) calculated on the basis of moments (Eq. 7) and the autocorrelation function (Eq. 8) are determined. There are also presented the definitions of variance estimators of the expected signal value estimator calculated with use of the classic method (Eq. 11) and autocorrelation function (Eq. 12). Because both estimators have bias, there are given definitions (Eq. 14, 15) for the case when only quantization has an influence on the variance bias. In subparagraphs 2.1 - 2.3 there are presented exemplary results of calculating the variance (Eq. 3) of the estimator (Eq. 2) for the examined signals. For each signal a definition of the characteristic function (Eq. 16, 19, 22) is given. On the basis of the characteristic function definitions, the detailed formulas (Eq. 17, 20, 23) calculated from the random variable moments are derived. (Fig. 1-3) shows charts of the variance. There are defined the formulas (Eq. 18, 21, 24) allowing calculations of the mean square error. Exemplary results are given in Tables 1 and 2. The investigation results are summarized in Paragraph 3. They show that the accuracy of calculation results of the expected signal value estimator variance obtained with use of the classic method and those from the autocorrelation function is the same.
W artykule przedstawiono zastosowanie funkcji autokorelacji do oceny charakteru przepływu cieczy. Zbadano przebiegi funkcji dla dwóch rodzajów przepływu - laminarnego i turbulentnego. Zagadnienie to może być bardzo przydatne dla przepływów odbywających się dla granicznej liczby Reynoldsa. Uzyskane wyniki świadczyć mogą o przydatności tej funkcji do identyfikacji przebiegów turbulentnych. Mogą stanowić wstęp do wyznaczenia transmitancji oraz charakterystyk częstotliwościowych (amplitudowej i fazowej) rozpatrywanych przebiegów.
EN
The use of the autocorrelation function in the characterization of the fluid flow is presented in the paper. The pressure of the liquid in the given observation points was measured. Results were then compared with computational results of mathematical simulation. The function for two kinds of flow - the laminar and the turbulent - was analyzed. The autocorrelation function for turbulent flows vary in different observation points. There are significant differences in the frequency of the functions. The analysis of the autocorrelation function for laminar flow indicates that the autocorrelation function remains unchanged regardless of the chosen observation point. The constant frequency of the autocorrelation function, as well as the unchanging parameters of this function, regardless of the selected observation point, indicate that a flow is laminar. The issue in question can prove highly useful for analyzing flows which take place for the borderline Reynolds number. The results of the analysis presented in the paper indicate that the function might also find its use in the identification of turbulent flows. One may state that the presented methodology of the featuring the flow may prove useful for the analysis of the flows with the Reynolds number (Re) between 2000 and 4000. They may also serve as an introduction to the calculation of transfer function and the frequency functions (both amplitude and phase functions) of the analyzed flows.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.