Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  autoclave processing
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: A prepreg production device in laboratory scale is used to develop the production process of unidirectionally reinforced prepregs. Design/methodology/approach: The aim of the prepreg production device is to impregnate different types of reinforcement fibers with an arbitrarily selectable thermoset matrix system that completely satisfies the requirements for autoclave processing. As the prepreg production device is designed and built up modularly every module corresponds one step in the process. Findings: To identify the parameters of the production process and investigate its sensitivity on the material quality of both the prepreg as an uncured semi-finished product and the composite as the cured material experimental investigations regarding the resin flow, fiber volume content, mass per unit area and void content are carried out. Overall four material combinations have been investigated, where in each case the selected impregnation temperature and the width of the impregnation gap has been reproducibly varied in selected steps. Research limitations/implications: The experimental characterization of the prepregs and of the composite material is carried out according to German standards. Originality/value: Used parameters clearly affect the material properties, so that a proper impregnation and curing process can be achieved by optimizing the parameter to desired values.
EN
Purpose: The present work deals with the experimental investigation concerning the energy dissipation capacity of different kinds of reinforcement fibres in monolithic and hybrid layups under high velocity impact loads. The investigated kinds of fibres are carbon, glass and basalt. Design/methodology/approach: The test panels have been impregnated with thermoset resin. Curing was done by autoclave processing. In order to obtain comparable fibre volume contents of approx. 60 % in the different layups (monolithic and hybrid without and with separating layer), curing cycles adapted to the type of layup have been identified. The resulting fibre volume content of the test panels has been determined both by weighing and experimentally by chemical extraction and calcination. The impact load was applied by an instrumented experimental setup. Thereby both commercially available bullets and bearing balls accelerated with weighted propellant in a sabot have been used as impactors. The measured values are the velocities of the bearing balls as the impactor before and after penetration of the test panels. Findings: In both cases the results show the energy dissipation capacity of each single kind of fibre in case of the monolithic layups as well as the enhanced properties of the hybrid stacked layups without and with the separating layer as a core material. Typical failure modes on the impact surface and on the outlet areas are identified. Research limitations/implications: The influence of the respective kind of impactors, namely bullets and bearing balls, on the evaluated results is identified. Thereby the bearing balls exhibited a higher degree of reproducibility due to several reasons. Originality/value: Fibre reinforced plastics with hybrid stacking sequences can be used as load-bearing structures and at the same time as safety structures for passengers in automotive or aerospace applications. Moreover, with the hybrid stacked composites lightweight concepts can efficiently be realized regarding energy saving issues.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.