Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  atmospheric correction
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The standard recommended atmospheric gravity correction is based on the International Association of Geodesy (IAG) approach. This correction introduced into the results of gravimetric measurements reduces, in a simplified way, the influence of the actual atmospheric masses and the atmospheric masses contained inside a reference ellipsoid from the determined gravity anomalies or disturbances. Model of the actual atmosphere used in the IAG approach does not take into account topography as the lower boundary of the atmosphere, assuming that the atmosphere consists of spherical, constant density layers. In this study, we determined and analysed the components of atmospheric gravity correction for the area of Poland and its surroundings, considering topography as the lower limit of the atmosphere. In the calculations, we used algorithms typical for determining the topographic gravity reduction, assuming a model of atmospheric density based on the United States Standard Atmosphere 1976 model. The topography-bounded gravity atmospheric correction values determined were within the limits of 0.748-0.886 mGal and were different from standard, approximate atmospheric correction values in the range of 0.011 mGal for points at the sea level up to 0.105 mGal for points located at an altitude of approximately 2600 m.
EN
Copernicus Programme managed by the European Commission and implemented in partnership with i.a. the European Space Agency (ESA) provides free access to satellite data from Sentinel mission including Sentinel-2 high resolution optical satellite data. The aim of the research was to recognize opportunities of water detection on Sentinel-2 imagery. Satellite data was analyzed before and after atmospheric correction. A number of tests were carried out using indices selected from the literature. Based on the gained experience, a new index for water detection has been proposed, Sentinel Water Mask (SWM), specially adapted for Sentinel-2 images. Its construction is based on the highest difference between spectral values of water surface and other land cover forms. SWM provides quick and effective detection of water which is especially important in flood assessment for crisis management. Research was performed on unprocessed images of Sentinel-2 Level-1C and images after atmospheric correction (Level-2A). Water was detected with the use of threshold values determined by the visual interpretation method. The accuracy of the obtained water masks was assessed on the basis of validation points. The performed analysis allowed to indicate indices, which enable estimation of areas covered by water on Sentinel-2 images with high classification accuracy, this is: AWEInsh (Automated Water Extraction Index), MNDWI (Modified Normalized Difference Water Index), NDWIMcFeeters (Normalized Difference Water Index). Their application allowed for achievement of overall accuracy of water detection oscillating around 95% and high Kappa coefficient. The usage of the proposed SWM index leads to slightly better results (more than 96%). The sensitivity to the selection of threshold values of analyzed indices was assessed and then the optimal threshold ranges were determined. The optimal threshold value for NDWIMcFeeters should be included in the value range (0.1, 0.2), for MNDWI (0.2, 0.3) and for SWM (1.4, 1.6). The unambiguous threshold range for AWEInsh index was impossible to indicate due to the large range of values.
EN
A comparison of output of two absolute atmospheric correction methods (ATCOR by R. Richter, 1996, and an algorithm by L. Guanter et al., 2005, implemented in the BEAM/Visat framework) is presented. Analyses are based on satellite data acquired by CHRIS (Compact High Resolution Imaging Spectrometer) sensor onboard the PROBA (Project for On-Board Autonomy) satellite. For comparison, a set of in situ spectral measurements obtained by the Norwegian NIVA Institute was taken as reference data. The area of study was the Vistula Lagoon in Northern Poland. All analyses presented here are based on comparison of results of atmospheric correction methods with in situ reference data. Alterations between ground and satellite spectral measurements can be caused by changes of humidity or solar zenith angle, as well as fluctuations of water masses, aerosols and air masses, all of which phenomena occur with time passage. In order to minimize the influence of this element, a set of simultaneous ground and satellite measurements was analyzed. Observations were collected on the same day, 18th August 2008. The best atmospheric correction was obtained in ATCOR with a ground model calibration, and the mean relative difference in spectral reflectance between the results obtained with this method and the reference data was 0,18%. The drawback of this method is that it requires results from in situ spectral measurements to reinforce the reflectance derivation, while such data is usually unavailable. Hence, only methods independent of ancillary data are treated as authoritative. In this case, the output of two methods – ATCOR without ground model calibration and an algorithm by L. Guanter et al., (2005) implemented in BEAM/Visat framework – were compared against the reference data. The comparison yields 2,30% and 2,10% reflectance mean difference between ATCOR, an algorithm by L. Guanter et al., (2005) and the reference data, correspondingly. This leads to conclusion that an algorithm by L. Guanter et al., (2005), provided better results in our case.
PL
W artykule zaprezentowany został nowy algorytm do wyznaczania własności optycznych aerozoli atmosferycznych nad lądem wykorzystujący synergię obserwacji satelitarnych oraz pomiarów wykonywanych fotometrem słonecznym i ceilometrem. Instrument SEVIRI (Spinning Enhanced Visible Infrared Radiometer) znajdujący się na pokładzie satelity MSG (Meteosat Second Generation) oferuje możliwość monitoringu aerozoli atmosferycznych z wysoką rozdzielczością przestrzenną i czasową. Detektor SEVIRI mierzy promieniowanie elektromagnetyczne w 12 kanałach spektralnych, jednak tylko dane z trzech kanałów mogą być wykorzystane do wyznaczania własności optycznych aerozoli atmosferycznych. Są to dwa kanały w świetle widzialnym (0,6 i 0,8 žm) oraz jeden w bliskiej podczerwieni (1,6 žm). Zostały przeprowadzone testy mające na celu określenie przydatności każdego z wymienionych kanałów. W wyniku przeprowadzonych symulacji stwierdzono, że z powodu niskich wartości albeda wegetacji najbardziej czuły na obecność aerozoli w atmosferze jest kanał 1., natomiast radiancja mierzona na górnej granicy atmosfery w kanale 2. w niewielkim stopniu zależy od grubości optycznej aerozolu, ze względu na wysokie albedo podłoża. Ponieważ ekstynkcja promieniowania związana z obecnością aerozoli na ogół znacząco maleje z długością fali, aerozole mają stosunkowo mały wpływ na radiancję mierzoną w kanale 3. Ponadto kanał ten jest czuły na zmiany albeda powierzchni i na występowanie chmur. Do wyznaczenia grubości optycznej aerozoli atmosferycznych zostały zastosowane metody odwrotne. Do symulacji obserwacji satelitarnych został wykorzystany model transferu promieniowania 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) (Vermote i in, 1997), oparty na przybliżeniu successive orders of scattering (Liou, 2002). Model 6S został użyty do zdefiniowania skalarnej funkcji kosztu. Funkcja ta została określona przez wartości obserwowane, wyznaczane własności optyczne aerozolu oraz dodatkowe informacje a priori (Rodgers, 2000). Algorytm składa się z trzech części. W pierwszym kroku eliminowanie są piksele zawierające chmury na podstawie zmienności przestrzennej reflektancji na górnej granicy atmosfery w kanale 1,6 žm. W kolejny kroku wykonywana była minimalizacja funkcji kosztu w celu uzyskania wartości reflektancji podłoża. Do estymacji tego parametru zostały użyte obserwacje naziemne grubości optycznej aerozoli pochodzące z pomiarów fotometrem słonecznym oraz pionowe profile ekstynkcji z ceilometru, zarejestrowane w dniu z niską zawartością aerozoli w atmosferze. Zakładając, że reflektancja podłoża dla rozdzielczości przestrzennej SEVIRI zmienia się wolno w czasie, uzyskane rezultaty mogły być użyte do wyznaczenia grubości optycznej w następnych lub poprzednich dniach. Ostatnia część algorytmu jest związana z wyznaczeniem własności optycznych aerozoli atmosferycznych na podstawie minimalizacji odpowiednio zdefiniowanej funkcji kosztu. Opisana metoda została przetestowana na podstawie danych zebranych w kwietniu i w maju 2009 r. Obliczenia przeprowadzone zostały dla pikseli obejmujących fragmenty Puszczy Kampinoskiej. Wstępne rezultaty pokazały dobrą zgodność wyznaczonych i zmierzonych na powierzchni ziemi wartości grubości optycznej. Wartości obliczone różniły się od tych zmierzonych fotometrem słonecznym o ok. 0,025. Słowa kluczowe: aerozole atmosferyczne, grubość optyczna, poprawka
EN
The Spinning Enhanced Visible Infrared Radiometer (SEVIRI) instrument on board Meteosat Second Generation (MSG) offers new capabilities to monitor aerosol loading over land at high temporal and spatial resolution. We propose algorithm to derived aerosol optical properties from synergy of the satellite, sun photometer and ceilometer observations. SEVIRI instrument has three channels that can be useful in aerosol optical properties retrieval: two visible channels (0.6 and 0.8 ěm) and one near infrared channel (1.6 ěm). In order to determine usefulness of each of these channels we carried out tests. It turned out that the 1st channel is the most sensitive for the presence of aerosols, due to relatively low vegetation albedo values in this wavelength. On the contrary, because of rather high albedo of vegetation in the 2nd channel radiation measured at the top of the atmosphere weakly depends on aerosol optical thickness. Since radiation extinction connected with presence of aerosols strongly decrease with wavelength aerosols have relatively small influence on measured radiation in the 3rd channel. Furthermore, this channel is sensitive on changes in albedo of surface and on presence of clouds. Due to above-mentioned reasons we decided to use the radiance measurements in the 1st channel of SEVIRI in retrieval of aerosol properties. In order to retrieve aerosol optical thickness we apply inverse methods. For simulations of satellite observations we use 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) (Vermote et al., 1997) radiative transfer model, based on successive orders of scattering approximations (Liou, 2002). The 6S model is used to define a scalar cost function. This function is defined by observation, retrieved quantities, and a priori information (Rodgers, 2000). Retrieval algorithm consists of three parts. The first step is to remove cloud-contaminated pixels using spatial variability of the top of the atmosphere reflectance at 1.6 ěm. The next step provides surface reflectance based on the cost function minimization. Surface reflectance is the main difficulty in determination of aerosol optical properties over land. To estimate this parameter we use surface observations of aerosol optical thickness from sun photometer and vertical profile of extinction coefficient from ceilometer during a day with low aerosol content in the atmosphere. Assuming that surface reflectance at SEVIRI resolution changes slowly with time we can use previous result to calculate aerosol optical thickness for next or previous days. The last part of algorithm is related to aerosol optical properties estimation based on minimization of the respectively defined cost function. Described method has been tested for data collected in April and May 2009. Preliminary results were obtained for pixels located in the Kampinos Forest, a large forest complex located near to Warsaw in Poland. We found good consistency between the retrieved and measured at the surface the aerosol optical thickness. The calculated values differ from those measured by sun photometer by 0.025.
PL
W artykule przedstawiono metodykę przetwarzania wstępnego satelitarnych danych hiperspektralnych z sensora HYPERION. Jest to sensor umieszczony na platformie satelity EO-1 (Earth Observing - 1) wraz z multispektralnym sensorem ALI (Advanced Land Image). Hyperion rejestruje obraz w 242 kanałach z rozdzielczością spektralną 10 nm dla zakresów 357÷1058 nm (70 kanałów VNIR) oraz 852÷2576 nm (172 kanałów SWIR), z rozdzielczością przestrzenną 30 m. W artykule przedstawiono wyniki metod przetwarzania danych hiperspektralnych dla fragmentu sceny HYPERIONA. Przetwarzanie wstępne tzw. pre-processing wymaga odpowiedniego przygotowania i analizy danych. Przeprowadzane w programie ENVI (Environment for Visualizing Image) procedury pre-processingu obrazu HYPERIONA, podzielone zostały na dwa główne etapy. W pierwszym etapie wykonano, tzw. destriping, czyli usuwanie zakłóceń spowodowanych niestabilnością sensora lub wadliwie działającymi detektorami oraz korekcję efektu smile, ujawniającego się w obrazach hiperspektralnych w postaci gradientu jasności. Do identyfikacji kanałów obarczonych efektem smile a także do częściowego wyeliminowania tego zakłócenia wykorzystano transformację Minimum Noise Fraction (MNF) oraz Inverse MNF. W drugim etapie pre-processingu wykonana została korekcja atmosferyczna obrazu HYPERIONA. Korekcję przeprowadzono za pomocą programu Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) dostępnego, jako moduł programu ENVI. W wyniku dokonanego na obrazie HYPERIONA pre-processingu, usunięte zostały zakłócenia stripingu, smilingu oraz zakłócenia związane z wpływem atmosfery.
EN
The paper presents methodology of preliminary pre-processing of spaceborne hyperspectral data. HYPERION is a sensor, placed on the platform of EO-1 (Earth Observing-1) satellite, which records images in 242 channels, at the spectral resolution of 10 nm and the spatial resolution of 30 m. The paper described results of processing hyperspectral data for the HYPERION’s scene fragment. Preliminary processing, or the so-called pre-processing requires proper preparation and analysis of data. Procedures of pre-processing a HYPERION's image, performed with the use of ENVI (Environment for Visualizing Image) software, were split into two main stages. The first stage involved the so-called destriping, or the removal of interference caused by the instability of the sensor and defectively operating detectors. Another very important measure, aimed at preparing the image for the subsequent extraction of its thematic information was the removal of the "smile" effect, revealed in hyperspectral images in the form of the brightness gradient. The Minimum Noise Fraction (MNF) and Inverse MNF transformations were applied to identify those channels burdened with the "smile" effect, and also to partially eliminate that interference. The second stage of pre-processing involved the atmospheric correction of the HYPERION's image. That correction was achieved by means of Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) programme, available as a module of ENVI software. The pre-processing resulted in removal of striping, smiling, and interfering of atmosphere's impact.
PL
Dane teledetekcyjne zarejestrowane przez systemy lotnicze lub satelitarne nie mogą być od razu porównywane z krzywymi bibliotek spektralnych ze względu na wpływ atmosfery. Rejestrowana wartość promieniowania musi zostać przeliczona do bezwymiarowej wartości współczynnika odbicia spektralnego. W artykule przedstawiono porównanie wyników korekcji atmosferycznej obrazu HYPERION (357÷2576 nm). Korekcję przeprowadzono metodami empirycznymi (Flat Field, Internal Average Relative Reflectance, Empirical Line) oraz metodą FLAASH, opartą na modelu atmosfery MODTRAN. Jako dane referencyjne wykorzystane zostały krzywe spektralne z pomiaru spektrometrycznego in situ. Pomiar przeprowadzono spektrometrem FieldSpec HH Analytical Spectral Devices (ASD) (350÷1075 nm). Miarą oceny dokładności dopasowania krzywych spektralnych był średni błąd kwadratowy oraz odchylenie standardowe liczone na podstawie różnic współczynnika odbicia dla krzywych obrazowych i referencyjnych. Najmniejszą dokładność dopasowania krzywych otrzymano dla metod opartych tylko na parametrach obliczonych z obrazu. Zadowalający wynik dopasowania krzywych w zakresie VNIR uzyskano dla metody Empirical Line, gdzie średni błąd kwadratowy wynosił 0.020, natomiast odchylenie standardowe 0.019. Najlepszy wynik korekcji atmosferycznej w całym zakresie spektralnym rejestrowanym przez HYEPRIONA uzyskano dla metody bezwzględnej FLAASH.
EN
Because of the influence of the atmosphere, remote sensing data recorded by airborne or satellite sensors cannot be directly compared with spectral library curves. The value of recorded radiance has to be transformed to dimensionless value of reflectance. This paper presents a comparison of atmospheric correction results for the Hyperion’s image (357÷2576 nm). The atmospheric correction was performed with the following empirical methods: Flat Field, Internal Average Relative Reflectance, Empirical Line, and the FLAASH method based on the MODTRAN atmospheric model. Spectral curves from in situ measurements were used as reference data. Field measurements were taken by means of the FieldSpec HH Analytical Spectral Devices (ASD) spectrometer (350 nm÷1075 nm). The accuracy of curve matching was calculated based on the RMS error and the standard deviation, which were calculated based on differences of value for image and reference reflectance. The lowest accuracy of curve matching was obtained for methods based only on parameters derived from images. A satisfactory result of correction for the VNIR range was achieved with the Empirical Line method, whereby the RMS error was 0.020 and the standard deviation was 0.019. The best result of atmospheric correction in the entire HYPERION range was obtained with the absolute FLAASH method.
PL
Korekcja radiometryczna jest wstępnym etapem przetwarzania danych satelitarnych, który ma na celu usuniecie błędów radiometrycznych oraz przede wszystkim przetworzenie obrazu satelitarnego na jednostki radiancji spektralnej, pochodzącej od powierzchni Ziemi lub odbicia spektralnego. Niestety ale w praktyce korekcja radiometryczna obrazów wielospektralnych rzadko kiedy wykonywana jest w pełnym zakresie. Wynika to z kilku różnych przyczyn o charakterze technicznym ale także historycznym, związanych z początkami powstawania technologii przetwarzania danych satelitarnych. I to właśnie te historyczne uwarunkowania wpłynęły na fakt, i_ pełen proces korekcji radiometrycznej rzadko jest stosowany przy przetwarzaniu danych wielospektralnych. A przecie_ wykonanie korekcji radiometrycznej lub jej zaniechanie ma wpływ praktycznie na każdy rodzaj dalszego przetwarzania danych satelitarnych. Artykuł przedstawia idee korekcji radiometrycznej, omawia jej etapy oraz prezentuje przykłady wpływu korekcji radiometrycznej na efekty różnych podstawowych, najczęściej wykonywanych przetworzeń obrazów satelitarnych.
EN
The radiometric correction is and initial stage in satellite data processing, intended to remove radiometric errors and, primarily, to convert the satellite image to a unit of spectral radiance from Earth surface or spectral reflection. However, in practice the radiometric correction of multispectral images is unfortunately rarely performed in the full scope. This is due to various reasons of technical and also historical nature, related to the very beginning of the satellite data processing technologies. It is such historical aspects that have caused the complete radiometric correction process to be rarely performed while processing multi-spectral data. Yet, the performance or failure to perform the radiometric correction affects virtually all further processing of satellite data. The present paper gives an overview of the radiometric correction, describes its stages and presents examples of the effects of radiometric correction on the results of various basic, most frequent processing of satellite images.
PL
Na promieniowanie dochodzące do sensora satelitarnego wpływa przede wszystkim atmosfera, znajdująca się na drodze od obiektu do detektora. Korekcja atmosferyczna jest jednak na ogół pomijana w procesie przetwarzania zdjęć satelitarnych. Wynika to m.in. z faktu, iż aby wpływ atmosfery oszacować w sposób poprawny, wymagana jest duża liczba danych pomiarowych i skomplikowany model atmosfery. W przypadku analizy zdjęć archiwalnych uzyskanie tego rodzaju danych często jest utrudnione, a czasami wręcz niemożliwe. Stosuje się więc na ogół tzw. średnie atmosfery klimatyczne, które charakteryzują średnie warunki atmosferyczne panujące na danym terenie. Wymóg wykonywania korekcji atmosferycznej zdjęć satelitarnych nie zawsze występuje (np. analizy jakościowe, interpretacja wizualna), ale w przypadku przeprowadzania analiz ilościowych lub wieloczasowych uwzględnienie wpływu atmosfery jest czynnikiem istotnym dla uzyskania prawidłowych wyników. Niniejsze opracowanie prezentuje wyniki badań nad wpływem uwzględnienia korekcji atmosferycznej w procesie klasyfikacji wielospektralnej. Okazuje się, że klasyfikacja obrazów skorygowanych ze względu na wpływ atmosfery pozwala na uzyskanie lepszej delimitacji klas, niż to jest w przypadku klasyfikacji zdjęć źródłowych.
EN
Atmosphere between an object and a satellite detector is the most important element, which decided about the radiation registered by satellite sensor. However, atmospheric correction is mostly neglected during satellite image processing. It's implicated by fact that to estimate the influence of atmospheric conditions, a lot of different meteorological parameters and model of atmosphere are needed. In case of archived images gathering this kind of data is often difficult or even impossible. Therefore standard atmosphere models which described average atmospheric conditions on different areas are used. In some application atmospheric correction is not needed (i.e. qualitative analyses, visual interpretation) but for quantitative analyses or multitemporal analyses this correction is very important to obtain correct results. This article presents results of researches on influence of atmospheric correction on the process of multispectral classification. It was found that classification of atmospheric corrected images make better classes delimitation possible.
EN
The accuracy analysis of an approximate atmospheric correction algorithm for the processing of SeaWiFS data has been investigated for the Baltic Sea. The analysis made use of theoretical radiances produced with the FEM radiative transfer code for representative atmosphere-water test cases. The study showed uncertainties in the determination of the aerosol optical thickness at 865 nm and of the A*ngström exponent lower than š 5% and š 10%, respectively. These results were confirmed by the analysis of 59 match-ups between satellite-derived and in situ measurements for a site located in the central Baltic. Because of the relatively high yellow substance absorption, often combined with the slanted solar illumination, the retrieval of the water-leaving radiance in the blue part of the spectrum appeared to be highly degraded, to the extent that almost no correlation was found between retrieved and simulated values. Better results were obtained at the other wavelengths. The accuracy in the estimation of the remote sensing reflectance ratio R35 decreased with diminishing chlorophyll a concentration and increasing yellow substance absorption, ranging between š 7% and š 47%. The propagation of R35 uncertainties on chlorophyll a estimation was quantified. Keeping the same atmosphere-water conditions, the atmospheric correction scheme appeared sensitive to seasonal changes in the Sun zenith.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.