Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  atmosfera Marsa
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Chemia radiacyjna w eksploracji Marsa
EN
The discussion of chemical reactions caused by ionizing radiation is started, as usual, with the nature of the object which absorbs the energy. First, the composition (CO2 = 95.3%) and density of martian atmosphere is discussed; the latter is low, 120 times smaller than over the Earth atid does not protect the surface of Mars from ionizing radiations. The atmosphere over the Earth secures the shield equivalent to 3 m of concrete, with many positive consequences for the Life on Earth. In addition, high energy protons from the Sun are diverted magnetically around the Earth, and that is not the case around the Mars. The radiolysis of Martian atmosphere starts with formation of CO2 as the primary product of single ionization spurs. The multi-ionization spurs can yield exotic carbon-oxygen compounds, not explored yet. Anyway, the radiolysis of martian atmosphere is completely different from the case of Earth, where the primary product is N* ion-radical. The lack of water vapor over Mars prevents the formation of an analogue to acid rains, and of creation of many other compounds. The most interesting feature of Martian regolith is the possibility of the presence of hydrated minerals, which could have been formed milliards years ago, when (probably) water was present on Mars. Water present in the crystalline lattice undergoes only limited radiolysis, as it is known from the case of concrete, produced as biological shield build on Earth, around the sources of ionizing radiation. Formation of natural hydrated silicates on Mars was possible, therefore survival of traces of H2O on Mars is possible. However, this kind of water cannot be recovered easily, to be used by Mars explorers. The interface of the atmosphere and the regolith is probably the site of many chemical reactions. Very intensive UV, which includes part of the vacuum UV, can cause reduction of carbon dioxide to methane, recently discovered in traces over Mars, hopefully, but erroneously connected, in the mode of wishful thinking, to the Life. Minerals like sodalite, discovered on Mars can contribute as reagents in the mentioned reaction, and could be the source of hydrogen. Conclusions are dedicated to questions of the live organisms connected with exploration of Mars; from microorganisms, comparatively resistant to ionizing radiation, to human beings, considered not to be fit to manned flight, survival on Mars and return to Earth. The genius of Mankind which is able to create effective means of exploration over the distance of millions of kilometers, should be a satisfaction more important than the extremely expensive presence of man or woman on Mars.
2
Content available remote Chemia radiacyjna eksploracji Marsa
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.