Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  arctic aerosols
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper presents the CAMS model based aerosol optical properties calculated for two Spitsbergen fjords, Kongsfjorden (Ny-Ålesund) and Hornsund (Polish Polar Station in Hornsund) measured between 2010 and 2015. A small decrease in Aerosol Optical Depth (AOD) is shown throughout the study period leading to an alteration of the state of the polar atmosphere. However, the potential differences observed between the stations were not statistically significant. While during the studied period no significant differences in chemical composition between the stations were observed, increasing mean values of Black Carbon (BC) were found to be associated with an increasing number of wild forest fires in remote areas producing smoke plumes, which are further transported over vast distances and reach Spitsbergen.
2
Content available remote Variability in aerosol optical properties at Hornsund, Spitsbergen
EN
Spectra of the aerosol optical thickness from the AERONET station at Hornsund in 2005-2008 were employed to study the interseasonal and intraseasonal variability in aerosol optical thickness for λ=500 nm (AOT(500)) and the Angström exponent in the southern part of Spitsbergen in spring and summer. The dependences of aerosol optical properties on long-range transport and local meteorological conditions, i.e. wind direction and speed and humidity, were analysed. Backward trajectories computed by means of NOAA HYSPLIT model (Draxler & Rolph 2003) were used to trace the air mass history. The mean values of AOT(500) for spring and summer were 0.110 ± 0.007 (mean and standard deviation of the mean) and 0.048 ± 0.003 respectively. The average values of the Angström exponent do not differ and take respective values of 1.44 ± 0.03 and 1.45 ± 0.03. In both seasons, the highest AOT(500) cases (the highest 20% of AOT values) can be explained by long-range transport from Europe, Asia (spring and summer) and North America (summer). In summer, the impact of distant sources on AOT is strongly modified by cleansing processes en route to Hornsund. Local meteorological conditions at the station are of secondary importance as regards the intraseasonal variability of aerosol optical properties in the southern part of Spitsbergen.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.