Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  aquatic organisms
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Hydropower use of watercourses has tangible consequences for the environment, society and economy. Based on a literature review and their own research, the authors present current data on changes in the ecological status of waters within run-of-river and reservoir hydropower plants, i.e. changes in biological elements (benthic macroinvertebrates, plankton, ichthyofauna, macrophytes), as well as hydromorphological and physicochemical changes. Previous researchers have noted that the impact of hydropower use of rivers on ecological status of those rivers is extensive, consisting of, among others, changes in species structure and populations of macrophytes, benthic macroinvertebrates, plankton and ichthyofauna (positive as well as negative changes), algal blooms due to increased turbidity, constrained migration of water organisms, changes in temperature within hydroelectric power plants, the phenomenon of supersaturation, eutrophication, changes in hydrological conditions (e.g., increased amplitudes of diurnal water levels and their consequent annual reduction), and increased erosion below the damming and deposition of bottom sediments on the damming barriers. In addition to such changes in ecological status, hydropower use also has a visible impact on socio-economic conditions (e.g., living standards of the population) and the environment (e.g., quality of bottom sediments and biodiversity). The article offers an assessment of the impact of hydropower use of rivers on ecological status (biological, hydromorphological, physicochemical elements and hydrological conditions of such rivers), society, economy and environment; it also proposes a research scheme to assess the impact of hydropower structures.
PL
Wraz z większym zużyciem leków wzrasta zanieczyszczenie środowiska farmaceutykami. Praca przedstawia problem zanieczyszczenia wód powierzchniowych substancjami leczniczymi. Substancje te m.in. w wyniku niewłaściwych procedur utylizacji leków, wydalania przez ludzi i zwierzęta, ze ścieków szpitalnych trafiają wraz ze ściekami komunalnymi do oczyszczalni komunalnych. W oczyszczalniach rzadko stosuje się nowoczesne metody oczy-szczania ścieków ukierunkowane na tę grupę zanieczyszczeń. Substancje lecznicze wraz ze ściekami oczyszczonymi trafiają do wód powierzchniowych. W wodach powierzchniowych substancje czynne farmaceutyków z różną szybkością ulegają procesom biodegradacji (od kilku minut do kilkudziesięciu dni). Leki trudniej rozkładające się w wodzie mogą ulegać procesom akumulacji w ekosystemach wodnych, co prowadzi do wzrostu toksyczności wobec ryb i mikroorganizmów wodnych. Mogą również przenikać do wód gruntowych i są oznaczane w wodach pitnych, co stwarza zagrożenie dla zdrowia ludzkiego. Najczęściej wykrywanymi lekami w wodach powierzchniowych są niesteroidowe leki przeciwzapalne (NLPZ) (stężenia w wodach powierzchniowych wynoszą np. dla diklofenaku 25÷170 ng/dm3 w Szwecji, 17÷486 ng/dm3 w Polsce, dla ibuprofenu 13÷87 ng/dm3 w Szwecji, 12÷67 ng/dm3 w Polsce, dla naproksenu 387÷3140 ng/dm3 w Hiszpanii), estrogeny, wchodzące w skład środków hormonalnych (np. stężenie dla estronu wynosi 1,5 ng/dm3 we Włoszech, estradiolu 0,15÷3,6 ng/dm3 w Niemczech, etyinylestradiolu 0,1÷4,3 ng/dm3 w Holandii), leki regulujące gospodarkęlipidową, karbamazepina - lek przeciwpadaczkowy (stężenie w wodach powierzchniowych wynosi 25÷1070 ng/dm3 w Niemczech) i antybiotyki. Pozostałości farmaceutyków w wodach są oznaczane za pomocą chromatografii gazowej z detektorem mas oraz wysokosprawnej chromatografii cieczowej.
EN
The increasing amount of various pharmaceuticals that are used by people results in the contamination of natural environment with these substances. The presented work addresses the problem of contamination of surface water with pharmaceuticals. Due to insufficient procedures for utilization of medical drugs and human and animal excreta these substances pre-sent e.g. in hospital wastewater are transported with municipal wastewater to municipal wastewater treatment plants. The majority of wastewater treatment plants do not use adanced methods for treatment of wastewater contaminated with pharmaceuticals. These sub-stances are still present in wastewater after treatment and are discharged to surface water reservoirs. In surface water the active components of pharmaceuticals undergo biodegradation processes at different rates (from couple of minutes to several days). Pharmaceuticals that are less susceptible to biodegradation in water maybe accumulated in water ecosystems. This causes the increase in toxicity to fish and water microorganisms. Pharmaceuticals can also in-filtrate to groundwater and lead to contamination of drinking water, and thus pose a significant threat to human health. Pharmaceuticals detected in surface water include: non-steroidal anti-inflammatory drugs (NSAIDs) (the detected concentration of e.g. diclofenac is 170 ng/dm3 in Sweden, whereas in Poland it is 17÷486 ng/dm3, that of ibuprofen is 13÷87 ng/dm3 in Sweden, whereas in Poland it is 12÷67 ng/dm3, that of naproxen is 387÷3140 ng/dm3 in Spain), estrogens that are used in hormonal drugs (e.g. the concentration of estrone is 1.5 ng/dm3 in Italy, that of estradiol is 0.15÷3.6 ng/dm3 in Germany and that of ethynyl estradiol is 0.1÷4.3 ng/dm3 in Holland), lipid-regulating drugs, carbamazepine – an antiepileptic drug (the detected concentration in surface water is 25÷1070 ng/dm3 in Germany), and antibiotics. Pharmaceutical residuals in water are detected by gas chromatography with a mass detector and high-performance liquid chromatography.
3
Content available remote Influence of selected fluorescent dyes on small aquatic organisms
EN
Rhodamine B and Rhodamine WT are fluorescent dyes commonly used as tracers in hydrological investigations. Since introducing intensely red substances into rivers raises understandable doubts of ecological nature, the authors aimed at examining the influence of these dyes on small water fauna using bioindication methods. Quantitative results, calculated with the use of Bliss-Weber probit statistical method, were achieved by means of standardized ecotoxicological tests containing ready-to-hatch resting forms of fairy shrimp (Thamnocephalus platyurus). Qualitative studies included observation of water flea crustacean (Daphnia magna) and horned planorbis snail (Planorbis corneus), both typically present in rivers and representative for temperate climate, as well as guppy fish (Poecilla reticulata), paramecium protozoan (Paramaecium caudatum) and the above-mentioned fairy shrimp. The investigation revealed that both dyes in concentrations used for hydrological purposes are low enough to exert almost no toxic impact on water fauna considered.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.