Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  approximate entropy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Every year, droughts and floods cause significant damage to the economy and water resources of the UK. Numerous studies have been explored droughts and floods from various points of view, however few have pointed the variations in the patterns induced by climate change. The precipitation data of Central England in the UK was gathered from 1931 to 2020. The analysis was performed by application of fractal dimension, noise variance, Lyapunov exponent, approximate entropy, extreme climate indices, and Standard Precipitation Index. The cross-correlation results indicated the study area warming owing to CO2 emissions on a global and local scale, implicating the climate change in the study area. Moreover, the mean maximum and minimum temperatures were affected by CO2 emissions on global and local scales, respectively. The nonlinear dynamic analysis indicated that the duration and intensity of the dry and wet spells were increased due to climate change. In other words, the droughts’ intensity and duration were augmented. However, the number of annual droughts and wetness’s have remained unaffected by climate change. The results signified a weakening in the flash floods possibility and an increment in the flash floods severity owing to climate change. Moreover, climate change brought about an intensification in the rivers’ inundation (fluvial floods) probability. The findings of the present study contribute to the understanding of the mechanism of climate change impacts on droughts and floods (flash, pluvial, and fluvial) patterns and furnished references for nonlinear dynamic studies of droughts and floods patterns.
EN
Shaft-stator rub and cracks on rotors, which have devastating effects on the industrial equipment, cause non-linear and in some cases chaotic lateral vibrations. On the other hand, vibrations caused by machinery fault scan be torsional in cases such as rub. Therefore, a combined analysis of lateral and torsional vibrations and extraction of chaotic features from these vibrations is an effective approach for rotor vibration monitoring. In this study, lateral and torsional vibrations of rotors have been examined for detecting cracks and rub. For this purpose, by preparing a laboratory model, the lateral vibrations of a system with crack and rub have been acquired. After that, a practical method for measuring the torsional vibrations of the system is introduced. By designing and installing this measurement system, practical test data were acquired on the laboratory setup. Then, the method of phase space reconstruction was used to examine the effect of faults on the chaotic behaviour of the system. In order to diagnose the faults based on the chaotic behaviour of the system, largest Lyapunov exponent (LLE), approximate entropy (ApEn) and correlation dimension were calculated for a healthy system and also for a system with rub and a crack. Finally, by applying these parameters, the chaotic feature space is introduced in order to diagnose the intentionally created faults. The results show that in this space, the distinction between the various defects in the system can be clearly identified, which enables to use this method in fault diagnosis of rotating machinery.
EN
With the needs of social development, the scale of power equipment continues to expand. Among them, the transformer, as the core equipment in the power system, plays a key role in the safe and stable operation of the power system. However, in the field where the field strength is too high, partial breakdown of insulating media, that is the partial discharge occurs, which brings certain threats and damage to the safe operation of the power system. Therefore, this article uses the kurtosis-approximate entropy variational mode decomposition (VMD) partial discharge signal denoising method is used to preprocess the UHF partial discharge signal, through the simulation analysis and the result comparison, the feasibility of the method for denoising the partial signal of the transformer is clarified, designed to improve the safety and reliability of transformer operation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.