Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  antybiotyki antracyklinowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Bisinterkalatory jako potencjalne leki przeciwnowotworowe
EN
Intercalators constitute a group of compounds which interact reversibly with DNA double helix. The insertion of planar, polycyclic aromatic systems between adjacent base pairs leads to topological changes in the double helix (lengthening, unwinding) and disrupts replication, transcription and repair processes [1–4]. Some of the monointercalators e.g. doxorubicin are valuable drugs, but their clinical effectiveness is limited by their undesirable side effects, and development of multidrug resistance [12]. In order to overcome these limitations bisintercalators have been designed. Dimerization of monointercalating compounds was supposed to enhance their anticancer activity and minimize side effects [1,7]. Many research groups have been interested in designing various groups of bisintercalating agents of diverse chemical structure and biological properties, such as echinomycin antibiotics [5, 7–10], 7H-pyridocarbazole derivatives [19–21], bisanthracyclines [7, 12, 16], bisnaphthalimides [7, 22–37], bisacridines [38–48] and bisimidazoacridones [50–52]. There have been a number of modifications undertaken on polyaromatic rings, and linker chains in an attempt to improve the compounds’ activity. The structure-activity relationships have been suggested. It has been discovered that introduction of small lipophilic substituents or additional heterocycles into ring systems may lead to significant changes in binding affinity and cytotoxic activity of the compounds. It was discovered that many tumor types contained elevated polyamine levels and an active polyamine transporter for importing exogenous polyamines. Designing bisintercalators with aminoalkyl chains similar to polyamines has given a chance to improve selectivity in drug delivery to rapidly proliferating cells by utilizing the polyamine transporter. More extensive SAR studies revealed significant influence of length and rigidity of a linker binding two intercalating moieties on binding affinity and antiproliferative activity of bisintercalators. Intercalation and topoisomerases inhibition are not the only possible modes of action of the compounds. Some of them exert cytotoxic effect through induction of apoptosis e. g. bisnaphthalimidopropylspermidine (BNIPSpd, (29) Fig. 9) or disrupting repair process of DNA double helix (WMC -26, (55) Fig. 18). In this work we presented enormous chemical diversity of bisintercalators and depicted multiplicity of structural modification of dimeric molecules which may lead to enhanced cytotoxic activity becoming valuable anticancer drugs.
EN
While natural anthracycline antibiotics retain their position of clinically important antitumor drugs despite of serious side effects, much effort is directed towards their improvement by rational structural changes. Most of useful anthracycline antibiotics chemistry is done by dissconnection - modification approach, folloved by de novo glycosidic bond assembly. It is pointed out that 1,2- and 2,3-unasturated pyranosides constitute an important class of intermediates, useful for synthesis of natural and modified antibiotic aminosugars. Glycals derived from 3-amino-2,3,6-trideoxypyranoses and their 1-O-silylated derivatives are useful glycosyl donors for a variety of alcohols. Also anthracycline antibiotics can be obtained from them in simple preparative procedures which are amenable for scale up and technical process development. Moreover, unsaturated pyranoses from 6-deoxy-L- configurational series are useful chiral precursors for anthracycline aglycons synthesis. Remarkably, various synthetic schemes comprising anthracycline antibiotic sugars, aglycons and new synthetic analogues can be traced down to the single common precursor: 3,4-di-O-acetyl-L-rhamnal, easily obtained from a commodity chemical (raw material in food industry) L-rhamnose.
3
Content available remote Antybiotyki antracyklinowe
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.