Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  anti-reflection coating
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Spinel zinc ferrite (ZnFe2O4) nanocrystallites are applied as an anti-reflection coating (ARC) for the enhanced light harvesting in polycrystalline silicon solar cells (PCSSC) and its effect were studied. Spinel zinc ferrite nanocrystallites were prepared using precursors of zinc and ferric chloride by co-precipitation method. The morphological, optical, electrical characterizations are comprehensively used to establish the performance of spinel ZnFe2O4Nanostructured Thin Films (NTF) covered and uncovered PCSSC. Further, X-ray diffraction and fluorescence analysis have been performed to demonstrate the crystallographic patterns and elemental compositions of ZnFe2O4nanocrystallites. The developed spinel ZnFe2O4NTF on PCSSC shows the reduction in reflectivity (20.3%), improvement in light trapping efficiency (17.5%) and transmittance of the fabricated spinel ZnFe2O4 NTF was validated with optical and electrical observations.
EN
The present research is focused on developing ZnAl2O4 (gahnite) spinel as an antireflection coating material for enhanced energy conversion of polycrystalline silicon solar cells (PSSC). ZnAl2O4 has been synthesized using dual precursors, namely aluminum nitrate nonahydrate and zinc nitrate hexahydrate in ethanol media. Diethanolamine has been used as a sol stabilizer in sol-gel process for ZnAl2O4 nanosheet fabrication. nanosheet was deposited layer-by-layer (LBL) on PSSC by spin coating method. The effect of ZnAl2O4 coating on the physical, electrical, optical properties and temperature distribution in PSSC was investigated. The synthesized antireflection coating (ARC) material bears gahnite (ZnAl2O4) spinel crystal structure composed of two dimensional (2D) nanosheets. An increase in layer thickness proves the LBL deposition of ARC on the PSSC substrate. The ZnAl2O4 2D nanosheet comprising ARC on the PSSC was tested and it exhibited a maximum of 93 % transmittance, short-circuit photocurrent of 42.364 mA/cm2 and maximum power conversion efficiency (PCE) 23.42 % at a low cell temperature (50.2 °C) for three-layer ARC, while the reference cell exhibited 33.518 mA/cm2, 15.74 % and 59.1 °C, respectively. Based on the results, ZnAl2O4 2D nanosheets have been proven as an appropriate ARC material for increasing the PCE of PSSC.
EN
In this paper, we have obtained theoretically a convenient way to improve the tandem solar cell efficiency by using one-dimensional binary photonic crystals in the anti-reflection coating and intermediate reflective layer. Also, we design and simulate our structure by using two different methods; MATLAB program based on a transfer matrix method and COMSOL Multiphysics software based on a finite element method. We have obtained the localization of the photons energy on the appropriate cell and then reduced the energy losses by controlling the photonic band gap. The present design is more convenient for cold countries.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.