Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  anti-collision maneuvering
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Automation transparency is a means to provide understandability and predictability of autonomous systems by disclosing what the system is currently doing, why it is doing it, and what it will do next. To support human supervision of autonomous collision avoidance systems, insight into the system’s internal reasoning is an important prerequisite. However, there is limited knowledge regarding transparency in this domain and its relationship to human supervisory performance. Therefore, this paper aims to investigate how an information processing model and a cognitive task analysis could be used to drive the development of transparency concepts. Also, realistic traffic situations, reflecting the variation in collision type and context that can occur in real-life, were developed to empirically evaluate these concepts. Together, these activities provide the groundwork for exploring the relation between transparency and human performance variables in the autonomous maritime context.
EN
This paper presents a user‐friendly simulator developed based on Windows Forms and deployed as a test bed for validating automatic control algorithms. The effectiveness of some of the integrated track controllers has been tested with free running experiments carried out in the Towing Tank for Manoeuvres in Shallow Water in Ostend, Belgium. The controllers enable a ship to follow predefined random paths with high accuracy. Ship‐to‐ship interaction is considered in some cases. Simulator environments provide useful tools for extending the number of validation scenarios, supplementing the work performed in the towing tank. The simulator is presented with a graphical user interface, aiming at providing a good user experience, numerous test scenarios and an extensively‐validated library of automatic control algorithms. With the usage of the simulator, further evaluation of developed control algorithms by implementing extensive test runs with different ships and waterways could be made. Case studies are shown to illustrate the functionality of the simulator.
EN
Groundings and collisions still represent the highest percentage of marine accidents despite the current attention on Maritime Education and Training and the improvement of sensor capability. Most of the time, a collision is caused by a human error with consequences ranging from moderate to severe, with a substantial impact on both environment and life safeguarded at sea. In this paper, a brief statistical data regarding human element as a root cause of marine incidents together with collision regulations misunderstanding is presented as a background chapter. Furthermore, the present work discusses a decision support system architecture to suggest an appropriate action when the risk of a potential collision is detected. The proposed architecture system is based on various modules integrated with proper sensor input data regarding the surrounding navigation area. As a result, the tool can support the Officers of Watch in the decision-making process providing an early suggestion in compliance with the COLlision REGulations. The proposed system is intended to be used onboard independently from the degree of automation of the ship, and it is based on AIS, which is mandatory, making it widely applicable. The proper use of the system can considerably reduce the number of collisions, as demonstrated by the obtained results.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.