Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 25

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  annoyance
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
This paper presents the results of laboratory studies on the effect of wind turbine noise as an annoyance factor affecting the employees’ ability to carry out their basic tasks. It was assumed that different acoustic conditions characterizing wind turbine noise induce different levels of mental strain leading to differences in performance on cognitive performance tests. Therefore, during exposures to 9 different virtual acoustic environments, representing different wind turbine noises, 50 participants of the study performed 2 psychological tests the Vienna Test System: the ALS Work Performance Test and the COG Cognitrone Attention and Concentration Test. The statistical analysis of the obtained results allowed to formulate the following conclusion: the wind turbine noise with the equivalent continuous A-weighted sound pressure level of at least 50 dB(A) should be considered as the annoyance factor affecting the employees’ ability to carry out their basic tasks.
PL
W niniejszym artykule przedstawiono wyniki badań laboratoryjnych uciążliwości hałasu turbin ' wiatrowych ze względu na możliwość realizacji przez pracownika jego podstawowych zadań. Przyjęto, że różne warunki akustyczne charakteryzujące hałas turbin wiatrowych wywołują różny poziom obciążenia psychicznego prowadząc do różnic w wykonywaniu testów sprawności poznawczej. W związku ztym podczas ekspozycji na 9 różnych wirtualnych środowisk akustycznych, reprezentujących różne hałasy turbin, 50 uczestników badań :onywało 2 testy psychologiczne z Wiedeńskiego Systemu Testów: test wydajności pracy ALS oraz test uwagi i koncentracji COG Kognitron. Analiza statystyczna uzyskanych rezultatów pozwoliła na sformułowanie następującego wniosku: hałas turbin wiatrowych o równoważnym poziomie dźwięku a wynoszącym co najmniej 50 dB należy uznać za hałas uciążliwy ze względu na możliwość realizacji przez pracownika jego podstawowych zadań.
EN
The constant growth of energy demand, as well as the accompanying increase in environmental pollution resulting from the prevailing use of fossil fuels, has led to a rising use of energy from renewable sources. The use of wind turbines to generate electricity has many obvious advantages, such as lack of fuel costs during operation and lack of harmful pollutants, including carbon dioxide. Despite advantages, the use of wind turbines constantly raises questions concerning the impact of wind farms on humans. This impact includes many factors related to the operation of wind farms, and in particular noise emitted by these farms. The wind turbine noise impact on humans has been studied by the Central Institute for Labour Protection - National Research Institute. A test bench to conduct noise annoyance tests of different types of wind turbine noise in laboratory conditions have been developed. During exposures to 6 different virtual acoustic environments, representing different wind turbine noise, 40 participants assessed wind turbine noise annoyance. The paper describes the results of the studies concerning the assessment of wind turbine noise annoyance.
EN
Aim of the study was to asses noise annoyance in relation to psychoacoustic metrics of sound in an office environment. The Vienna Test System was used for this purpose. Virtual office acoustic environments were developed with sources of different psychoacoustic parameters (loudness, sharpness, fluctuation strength, roughness) but with a constant A-weighted sound pressure level of 55 dB - sound environment with conversations, sound environment with office equipment (computers, printers, telephones) and sound environment with all office noise sources together. The reference environment was a quiet office room with no additional noise sources. Recorded real noise sources were transferred to a virtual 3D sound environment and converted into binaural sound, which was then played back on headphones. During the exposure to each of the acoustic environments, the subjects performed the ALS test (work performance series) and COG test (measurement of attention and concentration) and then assessed the given environment using a questionnaire. The paper presents the results of the statistical analysis - despite different psychoacoustic metrics of office noise sources in the examined acoustic environments, no statistically significant differences were observed in the results of psychological tests.
PL
Zagadnienia z obszaru oddziaływania hałasu turbin wiatrowych na człowieka są tematami licznych prac i publikacji naukowych, które jednak w zdecydowanej większości dotyczą skutków tego hałasu u osób zamieszkałych w pobliżu farm wiatrowych. W Centralnym Instytucie Ochrony Pracy – Państwowym Instytucie Badawczym zrealizowano badania dotyczące oddziaływania hałasu turbin wiatrowych na człowieka, lecz w przeciwieństwie do innych badań dotyczyły one wpływu tego hałasu jako czynnika uciążliwego na możliwość realizacji przez pracowników ich podstawowych zadań. Przeprowadzono pomiary dotyczące wyznaczenia wartości poziomów hałasów turbin wiatrowych w funkcji odległości od farm wiatrowych. Obiektami badań były 3 farmy wiatrowe, zaś pomiary przeprowadzono w punktach pomiarowych zlokalizowanych w odległościach od 100 m do 3000 m od farm wiatrowych. Największe wartości równoważnego poziomu dźwięku A zostały zmierzone w punktach pomiarowych zlokalizowanych w odległości 100 m od farm wiatrowych (od 50,5 dB do 55,4 dB), a zwiększanie odległości od farm wiatrowych skutkowało zmniejszeniem mierzonych wartości poziomów hałasu turbin wiatrowych. Stwierdzono, że strefa uciążliwości hałasu turbin wiatrowych ze względu na możliwość realizacji przez pracownika jego podstawowych zadań to obszar wokół farmy/turbiny wiatrowej, na którym równoważny poziom dźwięku A hałasu turbin wiatrowych jest równy lub większy od 50 dB, zaś zasięg tej strefy nie przekracza odległości 500 m od farmy wiatrowej.
EN
Issues in the area of the impact of wind turbine noise on humans are the topics of numerous scientific works and publications, which in the vast majority concern the effects of this noise on people living near wind farms. The Central Institute for Labour Protection — National Research Institute carried out a research task on the impact of wind turbine noise on humans, but unlike other studies, it concerned the impact of this noise as an annoyance factor on the ability of employees to perform their basic tasks. The sound pressure levels of wind turbines noise as a function of distance from 3 wind farms were carried out. The measurement positions were located at distances from 100 mto 3000 m from the wind farms. The highest values of the equivalent A—weighted sound pressure level were measured in the measurement positions located at a distance of 100 m from the wind farms (from 50.5 dB(A) to 55.4 dB(A)), and increasing the distance from the wind farms resulted in the decrease in the measured values of sound pressure levels of wind turbine noise. It was found that the wind turbine noise annoyance zone due to the ability of employees ability to perform their basic tasks is the area around the wind farm/turbine, where the equivalent A-weighted sound pressure level of wind turbine noise is equal to or greater than 50 dB(A), and the range of this zone does not exceed a distance of 500 m from the wind farm.
EN
The Environmental Noise Directive (END), published in 2002, was transposed into Romanian local law in 2005, and it was the starting point for the first urban noise mapping exercises, initially conducted in nine Romanian cities. This paper presents the main evolutionary aspects of the noise assessment process, the development of strategic noise maps, and action plans, dealing with both the legislative side and the practical approach and results obtained. The study considers the specific regulations established by the European Commission regarding environmental noise assessment and deals with the global context at the country level, in which they have been implemented and applied.
PL
Odnawialne źródła energii stanowią alternatywę dla tradycyjnych nośników energii, tj. paliw kopalnych. Pozyskanie tej formy energii w Polsce wykazuje w ostatnich latach tendencję zwyżkową. Udział energii ze źródeł odnawialnych w pozyskaniu energii pierwotnej ogółem wzrósł w latach 2019–2020 z 19,74 % do 21,60 %. Energia pozyskiwana ze źródeł odnawialnych w Polsce w 2020 r. pochodziła w przeważającym stopniu z biopaliw stałych, energii wiatru i z biopaliw ciekłych. W przypadku energii wiatru, stosowanie turbin wiatrowych, pomimo licznych zalet, wywołuje od wielu lat szereg pytań i wątpliwości z zakresu oddziaływania turbin na człowieka. Oddziaływanie to obejmuje wiele czynników, w szczególności hałas turbin wiatrowych. Hałas turbin wiatrowych postrzegany jest jako źródło uciążliwości dla osób zamieszkałych i pracujących w pobliżu farm wiatrowych. W celu dokonania oceny uciążliwości hałasu turbin wiatrowych wśród pracowników zatrudnionych w pobliżu farm wiatrowych zostało przeprowadzone badanie ankietowe.
EN
Renewable energy sources are an alternative to traditional energy carriers, i.e. fossil fuels. Obtaining this form of energy in Poland shows an upward trend in recent years. The share of energy from renewable sources in the total primary energy production increased in the years 2019-2020 from 19.74 % to 21.60 %. Energy obtained from renewable sources in Poland in 2020 mainly came from solid biofuels, wind energy and liquid biofuels. In the case of wind energy the use of wind turbines, despite its numerous advantages, has been causing a number of questions and doubts about the human impact for many years. This impact involves many factors, in particular wind turbine noise. Wind turbine noise is seen as a source of annoyance for people living and working near wind farms. In order to assess the wind turbine noise annoyance for people employed in the vicinity of wind farms, a survey was carried out. The paper presents the results of this study and their analysis. The obtained results show that the surveyed employees perceive wind turbines noise as noise with a slight annoyance – the average annoyance rating was 2.33 on a scale from 0 to 10.
EN
Amplitude modulation increases the annoyance caused by wind turbine noise. One gets the improved annoyance when a penalty is added to the measured or calculated time-average sound level. The amplitude modulated wind turbine noise consists of pulses. Each of them could be characterized by the short time-average sound level and the modulation depth. The latter determines the pulse penalty. This paper shows how to calculate the improved annoyance of amplitude modulated wind turbine noise, when the short time-average sound level and the penalty for each pulse are known. A special case of identical pulses is discussed. The proposed methodology needs to be tested by research.
PL
Rozwojowi energetyki wiatrowej zarówno w Polsce, jak i na świecie, towarzyszą liczne pytania i wątpliwości dotyczące działania farm wiatrowych na człowieka. Wśród czynników związanych z funkcjonowaniem farm wiatrowych szczególne znaczenie ma hałas emitowany przez turbiny wiatrowe, postrzegany jako źródło uciążliwości zarówno dla osób zamieszkujących jak i pracujących w pobliżu farm wiatrowych. W Centralnym Instytucie Ochrony Pracy – Państwowym Instytucie Badawczym opracowano metodę i stanowisko badawcze umożliwiające prowadzenie w warunkach laboratoryjnych badań uciążliwości hałasu różnych typów turbin wiatrowych. W artykule zamieszczono opis metody i stanowiska badawczego oraz wyniki przeprowadzonych badań pilotażowych umożliwiające dokonanie oceny wpływu hałasu turbiny wiatrowej na wydajność pracy człowieka. Zaobserwowano tendencję, że zwiększenie poziomu dźwięku A odtwarzanego hałasu turbiny wiatrowej skutkuje m.in. zmniejszeniem poziomu wydajności badanych osób oraz obniżeniem poziomu jakości wykonanej pracy.
EN
The development of wind energy, both in Poland and in the world, is accompanied by numerous questions and doubts about the influence of wind farms on the human. Among the factors related to the operation of wind farms, wind turbine noise has to be seen as a source of annoyance for both people living and working near wind farms. A method and test a bench to conduct noise annoyance tests of different types of wind turbine noise in laboratory conditions have been developed at the Central Institute for Labour Protection - National Research Institute. The article describes the test method and test bench and the results of the pilot studies carried out to assess the impact of wind turbine noise on human performance. There has been a tendency that increasing the A-weighted sound pressure level of wind turbine noise resulted in a decrease in the level of performance of study subjects and a decrease in the level of quality of the work done.
PL
Niewłaściwie zastosowane lub rozmieszczone na zewnątrz urządzenia oświetleniowe wywołują efekt immisji światłem otaczającej nas przestrzeni. Problem obejmuje szereg aspektów – od bezpieczeństwa, poprzez ekologię, do ekonomii. W wielu krajach ochrona przed światłem niechcianym jest uregulowana prawnie. W Polsce oprócz Polskich Norm [2] istnieje dość skromny zapis poświęcony temu zagadnieniu w warunkach technicznych [1]
EN
Incorrectly applied or positioned outdoor lighting has the effect of immersing the surrounding space in light. The problem covers a number of aspects - from safety, ecology to economics. In many countries protection against unwanted light is regulated by law. In Poland, apart from the Polish Standards, there is a rather modest provision devoted to this issue in the technical conditions.
EN
Noise is unwanted sound judged to be unpleasant, loud or disruptive to hearing. Like air pollution, noise pollution is one of the serious matters of concern in urban areas. Noise pollution occurs when noise level exceeds certain limit and has deleterious effects on human health and wellness. The major sources of noise pollution are industries, road traffic, railways, airplane traffic and social celebrations. The traffic noise is notably high in cities due to higher density of population, frequent movement of people, good transport system coupled with increasing numbers of vehicles (on road). In this work, the assessments of traffic noise in Sambalpur city is presented. Twelve important locations were chosen for the assessment. Noise contours were drawn to visualize the spreading of traffic noise into its surroundings. At the same time, the effect of noise pollution on wellness of the exposed people was studied. The study shows that the traffic noise level and its effects, are both in an alarming stage in the city.
11
Content available Ocena hałasu tonalnego w środowisku pracy
PL
Hałas jako stresor może przyczyniać się do rozwoju różnego typu chorób, powodować rozproszenie uwagi, utrudniać pracę i zmniejszać wydajność pracowników. Elementy wyposażenia technicznego budynku, jak również urządzenia biurowe mogą emitować wyraźne dźwięki o charakterze tonalnym. Powszechne występowanie tych urządzeń w środowisku pracy przekłada się potencjalnie nawet na kilkaset tysięcy stanowisk pracy w Polsce. Liczne doniesienia literaturowe wskazują, że uciążliwość hałasu tonalnego oceniana subiektywnie jest większa niż hałasu szerokopasmowego. W ocenie środowiska pracy brak jest kryteriów dotyczących hałasu tonalnego zarówno w pomieszczeniach (normy budowlane), jak i w zakresie hałasu na stanowiskach pracy (ocena pod względem uciążliwości). W artykule dokonano przeglądu istniejących przepisów, przeanalizowano dane literaturowe oraz podano wyniki badań prowadzonych w CIOP-PIB w zakresie uciążliwości hałasu tonalnego.
EN
Noise as a stressor may contribute to the development of various types of illnesses, cause distraction, hinder work and reduce employee's productivity. The elements of the technical equipment of the building as well as office equipment can emit perceptible tonal sounds. The widespread presence of these devices in the work environment potentially translates into several hundred thousand jobs in Poland that may relate to this issue. Numerous literature reports indicate that the annoyance of the tonal noise assessed subjectively is greater than that of the broadband noise In the assessment of the working environment, there are no criteria regarding the tonal noise either in the rooms (building standards) or in the field of noise at workplaces (assessment in terms of annoyance). The article reviews existing legislation. analyses literature data and provide; the results of surveys regarding the tonal noise annoyance carried out in CIOP PIB.
EN
The noise perceiving issue is very subjective and depends on several factors, such as: the living environment in which each person has grown and developed, the education they have received, the culture in which their life principles have formed and, last but not least, the social and financial status. Therefore, in order to establish effective actions in multiple directions when it comes to any urban noise analysis, it is very important to know the perception and the subjective reactions of the individuals involved. The paper respects this idea, presenting the results of a sociological study on urban noise, applied in the city of Cluj-Napoca, Romania. The intention was to capture the reactions of the permanent residents of the city, but also of the people in transit, as well as to analyse the changes that occurred as result of the implementation of the Environmental Noise Directive (European Commission). The study shows that 75.2% of the respondents consider that the noise in the city has increased in the last ten years and 58% of tchem have rated the noise as level 4 or 5 on a five point scale. Information related to noise maps and actions taken to reduce community noise has no sufficient dissemination. There is also a medium to low reaction of the population in correlation to the declared noise annoyance.
EN
As a primary objective of this study, data were evaluated in the areas of advertising perception and the relationship between gender-generational characteristics was pointed out (generation Y and Z), moreover the selected types of advertising were mentioned. The types of advertising (advertising on TV, social networks, etc.) can acquire various forms (most annoying, most trusted, etc.) in gender-generational characteristics, which can affect the reputation of the organization. The data were obtained through a questionnaire research. The sample consisted of 296 responses. The data collection was implemented in early 2018. A significant difference was found in the perception of advertising in all dimensions among the categories of gender-generational characteristics except the 'most memorable'. Differential analysis was carried out, where significant differences occurred in a number of cases. Furthermore, a correspondent analysis was applied, in which the areas of perceptions of advertising had shown very close relations in several cases. The disadvantage of the research is that it is realized only in Slovakia.
PL
Jako główny cel tego badania oceniono dane w zakresie postrzegania reklamy oraz wskazano związek między cechami pokoleniowo-płciowymi (pokolenie Y i Z), ponadto wymieniono wybrane rodzaje reklamy. Rodzaje reklam (reklama w telewizji, portale społecznościowe itp.) mogą przybierać różne formy (najbardziej irytujące, najbardziej godne zaufania, itp.) w cechach płciowych, które mogą wpływać na reputację organizacji. Dane uzyskano za pomocą badań ankietowych. Próbka składała się z 296 odpowiedzi. Gromadzenie danych zostało wdrożone na początku 2018 r. Znaczącą różnicę stwierdzono w postrzeganiu reklamy we wszystkich wymiarach wśród kategorii cech pokoleniowych, z wyjątkiem "najbardziej zapadających w pamięć". Przeprowadzono analizę różnicową, w której znaczące różnice wystąpiły w wielu przypadkach. Ponadto zastosowano analizę korespondencyjną, w której obszary percepcji reklamy w kilku przypadkach wykazywały bardzo bliskie relacje. Wada badań polega na tym, że jest ona realizowana tylko na Słowacji.
EN
The paper shows a study on the relationship between noise measures and sound quality (SQ) features that are related to annoyance caused by the traffic noise. First, a methodology to perform analyses related to the traffic noise annoyance is described including references to parameters of the assessment of road noise sources. Next, the measurement setup, location and results are presented along with the derived sound quality features. Then, statistical analyses are performed to compare the measurement results and sound quality features. The included conclusions are focused on showing that the obtained loudness values, regardless of the used system, are similar in a statistical sense. Contrarily, sharpness, roughness and fluctuation strength values differ for the tools employed.
15
EN
The present study was conducted in the lobbies of 16 Taiwanese urban hospitals to establish what contributes to the degree of noisiness experienced by patients and those accompanying them. Noise level measurements were then conducted by 15 min equivalent sound pressure levels (LAeq, 15m, dB) during daytime hours. The average LAeq itself was found to be poorly related to perceived noisiness. Levels variations were better correlated, more continual noise may actually be perceived as noisier. According to the findings of a multiple linear stepwise regression model (r = 0.91, R2 = 0.83), the 3 independent variables shown to have the largest effects on perceived noisiness were 1) 1/(L5−L95), 2) effective duration of the normalized autocorrelation function (_e, h), of all LAeq, 15m over 9–17, and 3) percentile loudness, N5, 15m. These results resemble previous studies that had assumed that a larger fluctuation of noise level corresponds to less annoyance experienced for mixed traffic noise studied in a laboratory situation. As an advanced approach, for hospital noise that consisted of 12 audible noise events, subjective noisiness were evaluated by the noise time structure analyzed by autocorrelation with loudness and levels variation.
16
Content available Annoyance Related to Wind Turbine Noise
EN
A questionnaire inquiry on response to wind turbine noise was carried out on 361 subjects living in the vicinity of 8 wind farms. Current mental health status of respondents was assessed using Goldberg General Health Questionnaire GHQ-12. For areas where respondents lived, A-weighted sound pressure levels (SPLs) were calculated as the sum of the contributions from the wind power plants in the specific area. Generally, 33.0% of respondents were annoyed outdoors by wind turbine noise at the calculated A-weighted SPL of 31–50 dB, while indoors the noise was annoying to 21.3% of them. The propor- tion of subjects evaluating the noise produced by operative wind turbines as annoying decreased with increasing the distance from the nearest wind turbine (27.6% at the distance of 400–800 m vs 14.3% at the distance above 800 m, p < 0.016). On the other hand, the higher was the noise level, the greater was the percentage of annoyed respondents (14.0% at SPL up to 40 dB vs 28.1% at SPL of 40–45 dB, p < 0.016). Besides noise and distance categories, subjective factors, such as general attitude to wind turbines, sensitivity to landscape littering and current mental health status, were found to have significant impact on the perceived annoyance. About 50% of variance in annoyance rating might be explained by the aforesaid subjective factors.
EN
During operation, construction machines generate high noise levels which can adversely affect the health and the job performance of operators. The noise control techniques currently applied to reduce the noise transmitted into the operator cab are all based on the decrease of the sound pressure level. Merely reducing this noise parameter may be suitable for the compliance with the legislative requirements but, unfortunately, it is not sufficient to improve the subjective human response to noise. The absolute necessity to guarantee comfortable and safe conditions for workers, requires a change of perspective and the identification of different noise control criteria able to combine the reduction of noise levels with that of psychophysical descriptors representing those noise attributes related to the subjective acoustical discomfort. This paper presents the results of a study concerning the “customization” of a methodology based on Sound Quality for the noise control of construction machines. The purpose is to define new hearing-related criteria for the noise control able to guarantee not only reduced noise levels at the operator position but also a reduced annoyance perception.
EN
This paper describes the results of a study aimed at developing and validating a prediction model to assess the annoyance conditions at the operator station of compact loaders by using noise signal objective parameters only. For this purpose, binaural measurements were carried out on 41 compact loaders, both in stationary and real working conditions. The 62 binaural noise recordings were objectively analysed in terms of acoustic and psychoacoustic parameters and then divided into 9 groups and used in specific jury tests to obtain the subjective annoyance scores. Finally, multiple regression technique was applied to the first 6 groups of noise stimuli to develop the model while the remaining groups were used to validate it.
EN
The assessment of teachers’ exposure to noise in primary schools was carried out on the basis of: questionnaire studies (covering 187 teachers in 3 schools), noise measurements at the teachers’ workplaces, measurements of the school rooms acoustic properties (reverberation time and speech transmission index STI in 72 classrooms), analysis of statistical data regarding hazards and occupational diseases in the education sector. The studies have shown that noise is the main factor of annoyance in the school environment. Over 50% of questioned teachers consider noise as annoying and near 40% as very annoying or unbearable. A-weighted equivalent continuous sound pressure levels measured in classrooms, teacher rooms and common rooms are in the range of 58–80 dB and they exceed 55 dB (criteria of noise annoyance). The most frequently reported subjective feelings and complaints (over 90%) are: growth of psychical and emotional tension, irritation, difficulties in concentrating, hoarseness, cough. Noise in schools is also a harmful factor. High A-weighted equivalent continuous sound pressure levels ranging from 80 to 85 dB, measured in corridors during pauses and in sports halls, can cause the risk of hearing damage among PE teachers and persons oversensitive to noise. The latter concerns both teachers and pupils. High background noise levels (55–65 dB) force teachers to raise their voice. It can lead to the development of an occupational disease – chronic voice disorders due to excessive vocal effort lasting for at least 15 years. In the education sector 785 new cases of this disease were reported only in 2008. Poor acoustics in classrooms (reverberation time ranging from 0.8 to 1.7 s, STI < 0.6 in 50% of classrooms) have an adverse influence on speech reception and make the teaching and learning processes difficult.
PL
Infradźwięki są naturalnym zjawiskiem w świecie, a hałas infradźwiękowy powszechnie występuje w pobliżu dróg komunikacyjnych i w środowisku miejskim. W ostatnich latach znacznie wzrosło zainteresowanie infradźwiękami, zarówno ze względu na rozwój technologii wytwarzających infradźwięki i rosnący odsetek populacji eksponowany na ten hałas, jak i licznych niejasności z nim związanych. Z fizycznego punktu widzenia infradźwięki niczym nie różnią się od dźwięków słyszalnych czy ultradźwięków. Są zmianami ciśnienia rozchodzącymi się w postaci fal akustycznych w środowisku materialnym: ciałach stałych, cieczach i gazach. W niniejszym artykule będą rozważane tylko dźwięki rozchodzące się w powietrzu. Podział fal dźwiękowych na infradźwięki, dźwięki słyszalne i ultradźwięki wynika z tradycji i ma swoje korzenie w historycznych już badaniach wrażliwości narządu słuchu w funkcji częstotliwości, gdy skalę dźwiękową, z uwagi na ówczesne możliwości aparatury generującej sygnały akustyczne, podzielono na dźwięki słyszalne od 20 do 20 000 Hz i dźwięki niewywołujące u człowieka wrażenia słuchowego. Zaliczenie dźwięków o częstotliwościach < 20 Hz do dźwięków niesłyszalnych było podyktowane także i tym, że badane osoby określały słyszenie dźwięków z tego zakresu, nie jako słyszenie tonów w „normalnym” sensie, lecz raczej jako odczucie „ucisku” w uszach czy dudnienie, buczenie, a ponadto sygnały o niskich częstotliwościach najpierw były odbierane przez receptory drgań (Moore 1999). Ponadto, zarówno w przypadku dźwięków < 20 Hz, jak i dźwięków > 20 000 Hz problemem były, ograniczone wówczas, technicznie możliwości wytworzenia dźwięków o pożądanych parametrach. Dźwięki o częstotliwości poniżej 20 Hz nazywa się infradźwiękami (w niektórych pracach za górną gra-nicę infradźwięków przyjęto częstotliwość 16 Hz), a dźwięki o częstotliwościach powyżej 20 000 Hz nazwano ultradźwiękami (w niektórych pracach za dolną granicę ultra-dźwięków przyjęto częstotliwość 16 000 Hz). Istnieje wiele źródeł emitujących dźwięki o częstotliwościach poza zakresem 20 ÷ 20 000 Hz zarówno naturalnych, jak i antropogenicznych.
EN
Infrasound is traditionally defined as low-frequency sound that is inaudible. Infrasound is acoustic energy with a frequency below 16Hz or 20 Hz and both frequency limits are used. There is no agreement regarding a definition of infrasonic noise. According to Polish standard PN-N-01338:1986, noise whose spectrum consists of sounds with frequencies below 50 Hz is called infrasonic noise, but in literature the term low-frequency noise is more common and 250 Hz is usually considered its upper-frequency limit. Besides a natural origin sources of infrasound like volcanoes, tornados, snow avalanches or less intensive ones like sounds of some animals, etc., there are many human origin sources, e.g., air transport, heavy trucks, compressors, ventilation, air-conditioning systems and more recently wind farms. The latter are spreading as alternative renewable sources of energy. That is why interest in infrasound has recently in-creased. Infrasound, contrary to traditional opinion about its inaudibility, is perceived by our body through our hearing organ and perception via mechanoreceptors has been reported when the infrasound is sufficiently strong. Its audibility depends on the acoustic pressure level and re-quires a much higher level than in the conventional range (20 ÷ 20000 Hz). Infrasound at an extreme high level above 175 dB induces aural pain and could destroy the middle and inner ear (eardrum rupture occurs at 185 ÷ 190 dB). Exposure to infrasound induces temporary threshold shift of hearing. Data on permanent hearing effects are scarce and this problem requires further research. The vestibular organ seems to be sensitive. There are some studies reporting that exposure to infrasound elicits nystagmus (eye movements) from both animals and humans and can result in nausea and giddiness. Subjects exposed to infrasound at a high level (above 130 dB) have reported body vibration. In the region of 40 ÷ 80 Hz the lungs, and below 10 Hz the chest, head and abdomen are resonated. Some results on infrasound were the basis for acoustic weapons. The most prominent effect of infrasound is annoyance, especially in non-occupational exposure but extra-aural effects of exposure are very large in dependence of levels, frequency, circumstances and the subject’s sensitivity. The following have been reported: temporary changes in EEG, sleep disturbances, changes in the cardiovascular system and blood pressure, changes in the digestive and endocrine systems and many others. Tiredness, drowsiness, reduction in concentration ability and performance have been shown as well. Experiments with animals supported human results, however, summing up there are many inconsistencies between the results of different research centres. For over 25 years a team led by Alves-Pereira and Castelo Branco has published many papers on the vibroacoustic disease (VAD). According to their hypothesis exposure to low-frequency noise causes many pathological changes called VAD. The list of symptoms is long, starting with mood and behavioral abnormalities that are early findings related to stage 1 of VAD through in-creased irritability and aggressiveness, a tendency for isolation, depressions and decreased cogni-tive skills to psychiatric disorders, hemorrhages, ulcers, neurological problems, muscle pain and many others at VAD stage III. So far, nobody other than Alves-Pereira and Castelo Branco’s team has reported VAD. Therefore, their hypothesis seems to be original but controversial. Lack or scarcity of evidence should be filled by multicenter research based on scientific methods including epidemiological studies. Some problems with the effect of infrasound on human have resulted from the inconsistency in various authors’ measurements of low-frequency noise. There are some regulations related to infrasound and low-frequency noise, e.g., in Sweden, France, Russia, New Zealand and recently Poland. There is also a recommendation of the American Conference of Governmental Industrial Hygienists for ceiling levels of infrasound in occupational settings. Besides, some countries established national criteria for low-frequency noise in the environment or indoors (Denmark, the Netherlands, Germany, the UK, Sweden and Po-land). Summarizing, it should be emphasised that further research on the health effect of infrasound on human are necessary; especially the hypothesis of VAD should be investigated by multi-center research to be confirmed or refuted. Research should be performed using standardized methods of measurement and equipment. So nowadays to establish TLVs for low-frequency noise in occupational settings further research is necessary.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.