Conventionally, the filtering technique for attitude estimation is performed using gyros or attitude dynamics models. In order to extend the application range of an attitude filter, this paper proposes a quaternion-based filtering framework for gyroless attitude estimation without an attitude dynamics model. The attitude estimation system is established based on a quaternion kinematic equation and vector observation models. The angular velocity in the system is determined through observation vectors from attitude sensors and the statistical properties of the angular velocity error are analysed. A Kalman filter is applied to estimate the attitude error such that the effect from the angular velocity error is compensated with its statistical properties at each sampling moment. A numerical simulation example is presented to illustrate the performance of the proposed algorithm.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.