Electroencephalogram (EEG) is the brain signal that contains the valuable information about different states of the brain. In this study EEG signals are analyzed for evaluating epileptic seizures in these signals and their sub-bands and comparing epileptic states with other states. A discrete wavelet transform is applied for decompose the EEGs into its sub-bands. The chaotic behavior of EEGs is evaluated by means ol normalized Shannon and spectral entropies. Entropy method is presented for detection of epileptic seizures through the analysis of EEGs and their sub-bands. At the end the mixture K-nearest neighbor and mutual information method is applied as a classifier to classify the different states in EEGs and their sub-bands. This method is applied to three different groups of EEG signals: 1) healthy states, 2) epileptic states during a seizure-free interval (interictal EEG), 3) epileptic states during a seizure (ictal EEG). The proposed method could classify different states with 99% accuracy.
PL
Elektroencefalografia EEG jest analizą sygnału mózgu. W artykule przedstawiono metody analizy sygnału EEG stosowane w celu wykrycia epilepsji. Zastosowano dyskretną transformatę falkową do dekompozycji sygnału EEG. Wykorzystano metodę entropii do detekcji sygnału związanego z epilepsją. Metody zastosowano do trzech grup pacjentów: zdrowych, chorych na epilepsję i chorych w czasie ataku epilepsji.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.