Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  analiza ekspresji genów
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Most of the commonly known feature selection methods focus on selecting appropriate predictors for image recognition or generally on data mining issues. In this paper we present a comparison between widely used Recursive Feature Elimination (RFE) with resampling method and the Relaxed Linear Separability (RLS) approach with application to the analysis of the data sets resulting from gene expression experiments. Different types of classification algorithms such as K-Nearest Neighbours (KNN), Support Vector Machines (SVM) and Random Forests (RF) are exploited and compared in terms of classification accuracy with optimal set of genes treated as predictors selected by either the RFE or the RLS approaches. Ten-fold cross-validation was used to determine classification accuracy.
PL
Zdecydowana większość znanych metod selekcji cech skupia się na wyborze odpowiednich predyktorów dla takich zagadnień jak rozpoznawanie obrazów czy też ogólnie eksploracji danych. W publikacji prezentujemy porównanie pomiędzy powszechnie stosowaną ˛metodą˛ Rekurencyjnej Eliminacji Cech z walidacja˛ (ang. Recursive Feature Elimination - RFE) a metodą stosującą ˛podejście Relaksacji Liniowej Separowalności (ang. Relaxed Linear Separability - RLS) z zastosowaniem do analizy zbiorów danych zawierających wartości ekspresji genów. W artykule wykorzystano różne algorytmy klasyfikacji, takie jak K-Najbliższych Sąsiadów (ang. K-Nearest Neighbours - KNN), Maszynę˛ Wektorów Wspierających (ang. Support Vector Machines - SVM) oraz Lasy Losowe (ang. Random Forests -RF). Porównana została jakość klasyfikacji uzyskana przy pomocy tych algorytmów z optymalnym zestawem cech wygenerowanym z wykorzystaniem metody selekcji cech RFE bądź RLS. W celu wyznaczenia jakości klasyfikacji wykorzystano 10-krotną walidację˛ krzyżową.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.