Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  analiza HRV
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Classification of falling asleep states using HRV analysis
EN
The article presents the results of studies on drowsiness and drowsiness detection performed using heart rate variability analysis (HRV). The results of those studies indicate that the most significant parameters, from the standpoint of classification of drowsiness are the following parameters of the HRV analysis: the low and high frequency band the ratio of the tachogram power in the LF and HF bands, and the total power distribution. The best detection results were obtained for the following methods, in the following order: the nearest neighborhood with metrics: standardized Euclides and Mahalanobis, the square discriminant analysis, and the Bayesian classifier. In order to classify drowsiness periods, a neural network was also used; it consisted of four inputs, six neurons in the hidden layer, and three outputs, one of which was assigned to one of the accepted classes. In order to obtain the most effective learning, a linear feed forward network was designed using back propagation of errors and the RPROP algorithm. In the case of this type of networks, the achieved accuracy of the individual classes was on the level of 98.7%.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.